
M A K I N G S E N S E O F

Testing Container Security

As the design and implementation runs at
break neck speed, not much has been done
to ensure the fundamentals of security are in
place including end-to-end integrity, hygiene,
auditability, visibility and overall confidence in
the compute platform.

Containers, by name, have the primary objective
of keeping things (processes) contained. And
while the innate nature of the container (smaller
footprint, lightweight, discrete services etc.)
should by default deliver a more isolation centric
compute environment, the lack of attention
to detail in the service delivery lifecycle (SDL)
can result in an insecure implementation where
the containers do not deliver isolation. This
creates an opportunity for an attacker to exploit
the weakness, traverse the environment and
ultimately perform a high impact attack (think
data breach and hacker persistence in the DevOps
chain).

Vulnerability management, testing and validating
container security is therefore critical to maintain
confidence in the ongoing use of the technology.

The Divide Between Developers and
Security Testers (Hackers)

The divide between developers and security
testers (let’s just say that unsolicited “testing”
is executed by hackers) centres around one word
– abstraction. By exploring where abstraction
occurs we understand what it takes to implement
and validate secure container-centric systems.

The modern web application

Containers are designed to virtualise a single
application, hence the speed. You can run
multiple containerised apps on a single common
OS kernel. For containers, the entire “boot”
process that a normal virtual machine goes
through is essentially skipped and only the last
steps where the root filesystem is loaded, and
a shell is launched happens. More precisely, the
container environment is “started rather than
booted”.

The modern web application, designed, deployed
and operationally managed through an agile
process is most likely going to be using cloud-
native technology and intrinsically developed
for the modularity, scalability and speed of
the DevOps SDL. As such, we expect it to be
designed for a microservices architecture, heavily
leveraging containers.

While containerisation focuses on abstraction
of the app from the OS (generally a lower layer
of abstraction), modern app development itself
has tended towards higher levels of abstraction.
Given the speed at which apps need to be
delivered, developers leverage frameworks and
development environments that offer a higher
level of abstraction, making it easier to develop
without coding to cater for the lower levels of the
stack (the framework takes care of that).

As containers continue their march into the IT mainstream,
like most new technologies, they hold great prospects for
improvements in efficiency, scalability and security. However,
poor implementation practice generally lets the organisation
down, and container technology is no different.

We have developers racing to the top (of the
stack) but to execute a high-impact hack, the
attacker needs to traverse the stack to the lower
layers where the implication is greater. So, along
the lines of the mantra “hooking lowest wins”
we have the attacker racing to the bottom of the
stack.

Effectively Testing Containerised Deployments

To test and validate the security of an
environment utilising containers, requires a
discrete understanding of the language the app is
written in, the framework is it deployed through
and all the subsequent layers in the stack,
including the container orchestration and the
cloud platform it is operating in.

As a result, security testing for the modern
microservices app is a discipline to itself,
and essentially very different to testing your
traditional monolithic app (even if it was hosted
in the same cloud).

North-South, East-West

The goal with any form of cyber-attack is
persistence.

Persistence in a dynamic environment requires
a particularly savvy attacker. Remember that
containers can be especially ephemeral (lifetimes
often measured in seconds, minutes and hours
rather than days, months or years) so the very
nature of their low time-to-live could kill the
persistence that an attacker is looking to achieve.

The initial attack vector is most likely going to
be a pinhole entry. We call this the North-South
Attack. That is, the attacker finds a vulnerability
(say in a web app) and manages to exploit it.
Your traditional SQL injection is an example.
But to further the attack, the attacker needs
to remain inside the environment and needs to
be persistent. This requires the attacker to step
outside the application layer attack and move
horizontally in the environment – we call this the
East-West attack pivot.

The East-West attack is made all the more
complicated by the isolation that the container
delivers. Bravo containers! So containers can
deliver an inherently more secure environment.
But not all containers are created and maintained
equally and as such there remains (plenty) of
opportunity for the more illustrious attacker to
operate.

Kernel Level Exploit vs Living off the Land.

Escaping from the container is likely to be
achieved one of two ways: Either the container
deployment is vulnerable to some form of kernel
level issue or the attacker is going to have to
make use of what is in the container to exploit
it. Kernel level vulnerabilities don’t occur that
often. When they do they are quite devastating
because all deployments are susceptible. Insecure
container implementations are far more prevalent
with issues ranging from vulnerable third-party
code, inflated container footprints, unhardened
environments, poor configuration and wider
than necessary communications between system
components at the software defined networking
layer.

Penetration Testing for the Vulnerability
Management Program.

To gain confidence about the security of your
deployment you need the finesse of a surgeon to
peel away each layer of the system under review.

Such finesse can only come through expert
knowledge of all the layers in the stack and the
ability to transform from an application centric
test to an infrastructure centric test. Deep
knowledge of the cloud platform that you operate
on is also integral to maintain persistence and
move horizontally through the environment.

Most organisations have environments hosting
monolithic apps, traditional data centres and
public clouds hosting dynamic microservices
architectures. This means that an effective
penetration testing regime needs to
accommodate for the variation and as a result
you need to expect more from your testers!

To discuss how our security solutions can help protect your most vital assets,
please call us on 1300 922 923 or +61 (2) 9290 4444.
info@senseofsecurity.com.au www.senseofsecurity.com.au

