RSAConference2018

#RSAC

MATRIER

at and

San Francisco | April 16-20 | Moscone Center

SESSION ID:

AUTOMATING SECDEVOPS WORKSHOP

Murray Goldschmidt

Chief Operating Officer Sense of Security Pty Ltd

- Sense of Security is a leading, independent, privately owned consulting practice, founded in 2002.
- We're celebrating our 15th birthday this year as a business.
- At SOS we are relentless at achieving positive security outcomes for all our clients.
- We do that through our hard work, knowledge, and skills that we constantly keep improving.

all and

Overview	 Security in DevOps Overview – Stack Security AWS DevOps Environment Compromise Demo Morning Tea @ 10:30am
Coding	 Overview of a DevOps Lab Environment Securing Custom Code Third Party Code Issues Static & Dynamic Code Analysis
Scanning	 Continuous Monitoring Automating Security / Self Healing Configuration & Infra as Code
Attacking	 Active Defense & Healing Countermeasures for Attacks - Interactive Question Time

alla ne

Automation is Everywhere

Source: https://www.wired.com/2017/01/cafe-x-robot-barista/

RS/Conference2018

Adversaries are using Automation

Source: http://www.zdnet.com/article/new-dark-web-scheme-lets-wannabe-cybercriminals-get-in-on-ransomware-for-free/

all and

RSAConference2018

all and

alla ne

MATTE

asta

DevOps DJ's!

all and

RSAConference2018

DevOps DJ's!

alla ne

#RSAC

TANKES

DevOps Coverage: Speed & Timing

all and

Introducing StackSec

Custom Application (1ST party code, 3rd party libraries, etc.)

Application Framework (Tomcat, Nginx, Apache, etc.)

Network & OS (Linux, Windows, etc.)

Cloud Platform (Amazon RDS, S3, Lambda, etc.)

Core Infrastructure (Fabric Functions: AWS IAM, EC2, Azure, etc.)

all and

Continuous Monitoring

all and

RS/Conference2018

Collapse the Vertical Plane

alla

RSAConference2018

#RSAC

Stretch into Horizontal Plane

all and

Produces the DevOps Pip

alla ne

MEATTERS

Security Automation in De

all and

We look at a generic development pipeline...

- 1. Development Environment
- 2. Source Code Repository
- 3. Build Platform (CI)
- 4. Deployment Process (CD)
- 5. Staging / Production Hosting Environment

DevOps Mayhem

all and

15Aug17

RSAConference2018

#RSAC

Tools, Tools & More Tools

all and

Source: Momentum Partners

RSAConference2018

Coverage Across Public, Private & Hybrid Clouds

all and

RS/Conference2018

743

DevSecOps – Securing the Stack

alla ne

RS/Conference2018

#RSAC

DevSecOps Lab

alla ne

#RSAC

MATTER

DevSecOps Lab

alla no

#RSAC

MATTER

DevSecOps Lab

at and

RSAConference2018

Welcome to the DevSecOps Lab

all and

RSA:Conference2018

DevSecOps Lab AWS Kill Chain Attack

We played this video during the learning lab: https://www.youtube.com/watch?v=fm4CqlxqQfs

all and

World's Largest PII Data Breach?

C Secure https://www.wired.com/story/equifax-breach-no-excuse/

WIRED

SHARE

f

 \geq

3288

Equifax Officially Has No Excuse

embarrassingly inadequate credentials of "admin/admin." Equifax took the platform down on Tuesday. But observers say the ongoing discoveries increasingly paint a picture of negligence—especially in Equifax's failure to protect itself against a known flaw with a ready fix.

A 'Relatively Easy' Hack

The vulnerability that attackers exploited to access Equifax's system was in the Apache Struts web-application software, a widely used enterprise platform. The Apache

all and

Equifax blames massive data breach on Apache Struts vulnerability

Hack compromised the personal details of as many as 143 million US consumers

Reuters (ARN) 14 September, 2017 15:23

all and

- Addressing the need to identify defects earlier.
- Writing and testing your in-house "first party" code.
- Testing and inspecting libraries and "third party" code.

Defense in Depth

all and

alla ne

Good Quality Code – Problem Statement

Why do you need to address code quality?

- Vulnerabilities caused by coding may lead to **unacceptable risk**.
- Well written code **performs better**
 - If well understood, has less risk of being vulnerable.
 - Likely to have better bottom line results on the final application.

all and

When is the best time to address coding defects?

all and

Identify Defects As Soon As Possible

Source: Veracode

alla

RS/Conference2018

Shifting Left

alla

MATTERS

Scanning Code at the IDE

Security Flaws Found: 2 High 6 Medium 2 Low							VERACOD		
Best Pra	ctices: 0 CWEs Protected Against					com.badapp.servlet took 10	seconds to sca		
erity	~ Issue	CWE ID	Filepath	Line	Last Scanned	Details	Ignore		
High	SQL Injection: Improper Neutraliza	89	/BadWebApp/src/com/badapp/servlet/login.java	61	5 seconds ago	Details	Ignore		
High	SQL Injection: Improper Neutraliza	89	/BadWebApp/src/com/badapp/servlet/search.java	62	5 seconds ago	Details	Ignore		
Medium	Basic XSS: Improper Neutralization	80	/BadWebApp/src/com/badapp/servlet/search.java	67	5 seconds ago	Details	Ignore		
Medium	Basic XSS: Improper Neutralization	80	/BadWebApp/src/com/badapp/servlet/search.java	68	5 seconds ago	Details	Ignore		
Medium	Use of Hard-coded Password	259	/BadWebApp/src/com/badapp/servlet/login.java	57	5 seconds ago	Details	Ignore		
Medium	Use of Hard-coded Password		/BadWebApp/src/com/badapp/servlet/search.java	57	5 seconds ago	Details	Ignore		
Medium	Session Fixation	384	/BadWebApp/src/com/badapp/servlet/login.java	63	5 seconds ago	Details	Ignore		
Medium	Trust Boundary Violation	501	/BadWebApp/src/com/badapp/servlet/login.java	64	5 seconds ago	Details	Ignore		
Low	J2EE Bad Practices: Direct Manag	245	/BadWebApp/src/com/badapp/serviet/login.java	57	5 seconds ago	Details	Ignore		
Low	J2EE Bad Practices: Direct Manag	245	/BadWebApp/src/com/badapp/servlet/search.java	57	5 seconds ago	Details	Ignore		

ast and

RSAConference2018

Scanning Code at the IDE

all and

RSAConference2018
Automating Security at the Deploy Layer

Preventing a deployment if something fails.

Using Scan 1218389 Checks Failed **POST BUILD TASK : FAILURE END OF POST BUILD TASK: 0** ESCALATE FAILED POST BUILD TASK TO JOB STATUS Build step 'Post build task' changed build result to FAILURE Finished: FAILURE

all and

Third Party Libraries

Why do you need to address third party library risk?

- Embedding third party code in your application has huge advantages, but comes at the risk of latent exposure to vulnerabilities.
- Many open source library repositories have little or no vetting of contributors, meaning third party code cannot be trusted blindly.
- When vulnerabilities are discovered in a shared library, it is important to quickly identify your exposure.

all and

 Supply Chain Security: Identify Vulnerable Third Party Components. Automatically strengthen and secure software supply chains everywhere, and at scale

Source: https://www.sonatype.com

Source: https://www.grammatech.com/

Defense in Depth

Monitoring & Self-Healing

- Cloud environments require proper configuration management.
- Visibility is key to knowing if your DevOps stack is secure.
- Self-healing is a growing trend and worth implementing.

all and

Monitoring & Self-Healing

Why is your cloud environment configuration important?

- Complex environments have **complex and diverse configurations**.
- Cloud configurations aren't always visible, and we need that visibility to understand the real configuration.

all and

 We need to have assurance that our configuration standard is being enforced and is compliant.

alla no

Continuous Monitoring

alla ne

RS/Conference2018

#RSAC

MATHE

alla ne

RSAConference2018

7.1 2

VPC VPC Q QUALYS Qualys Nexus Jenkins CI/CD Appliance IQ Server One or more instances Server of Application Server Subnet 10.1.1.0/24 Subnet 10.2.1.0/24 ap-southeast-2 VPC 10.1.0.0/16 VPC 10.2.0.0/16

alla ne

Self-Healing

alla

Self-Healing - Problem Statement

Why is **Self-Healing** important?

- Respond to changes in your environment immediately, reverting changes malicious or accidental.
- Assurance that your stack configuration is compliant to your risk appetite at all times.
- Alert you to take action for improvement if it does detect unwanted changes (or alert of a security incident).

at a no

The techniques we're about to look at in our lab are all known by different names:

Event Driven Security – responding to events
RASP – Runtime Application Self Protection
Self-Healing – we think this describes it nicely!

There may be subtle difference in implementation, but for the large part we consider they all do the same thing.

We're Going Serverless!

"Serverless computing solutions execute logic in environments with no visible VM or OS. Services such as Amazon Web Services Lambda are disrupting many cloud development and operational patterns. Technology and service provider product managers must prepare for the change." -*Gartner*

AWS Lambda

- It's "Serverless"
- A stateless, programmatic function that responds to events based on triggers.
- Other Platforms:
 - Microsoft Azure: "Azure Functions"
 - Google Cloud Platform: "Google Cloud Functions"

Event Driven Security / Self-Healing

To implement automated self-healing using a serverless solution we generally need a few things:

all and

- 1. A well defined "event" that we can respond to (i.e. an open port, or a new user account being created)
- 2. A near real-time source of logging data to listen for the event.
- 3. Something to do if the event is triggered.

Demo Lambda locking a user out after they try to create another user account.

Or disable user without 2-factor?

alla ne

Run Time Defence - WAF

all and

Run Time Defence - WAF

Capability	Requirements
More Advanced Application Firewalling – RASP ****	 Runtime application self-protection (RASP) Built into an application Detect and prevent real-time application attacks "self-protecting" or reconfiguring automatically without human intervention (on conditions of threats, faults, etc.)

* https://blog.blackducksoftware.com/cve-2017-5638-anatomy-apache-struts-vulnerability

** https://blog.qualys.com/technology/2017/03/09/qualys-waf-2-0-protects-against-critical-apache-struts2-vulnerability-cve-2017-5638

*** https://www.imperva.com/blog/2017/09/apache-struts-rce-and-managing-app-risk/

**** https://www.veracode.com/security/runtime-application-self-protection-rasp, https://www.waratek.com/runtime-application-self-protection-rasp/

all and

When attackers hack web apps/servers, they want to:

- Get access to sensitive data
- Remain persistent
- Access additional internal resources Horizontal Attack

Pre Run Time Defence – Containers

Container Attribute	Defence in Depth
TTL - Containers Don't Live as Long as	Affects Persistence of Attack
servers	BUT – Permanent storage negates
Isolated from the underlying machine, and from other containers	Increasing difficulty for Pivot Attack BUT – need hardening
Fewer privileges than regular processes	Escape from a container usually involves kernel exploitation (difficult)
Container images can be scanned (before deployment) for known vulns	Quality at Source. <i>Prevent</i> images with a vulnerability from being deployed
Supports microservice architecture	Patch, update, redeploy

alla ne

Presentation Layer

Business Logic Layer

Data Access Layer

Database / Core Platform

all and

RSAConference2018

Run Time Defence – Container Firewalls

Attribute	Defence in Depth
Attack Window	 before a vulnerability is published before a patched is available before you can implement a corrective action
Additional Controls Container Firewall 	 application segmentation whitelist of allowed container connections policy for internal applications (web servers) prevent connections to external networks prohibit direct connections to database/core

all and

WATTLERS

http://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/vpc-peering-basics.html

4. If required, update the security group rules that are associated with your instance to ensure that traffic to and from the peer VPC is not restricted. You can reference a security group from the peer VPC as a source or destination for ingress or egress rules in your security group rules.

alla

VPC VPC Q QUALYS Qualys Nexus Jenkins CI/CD Appliance IQ Server Server One or more instances of Application Server Subnet 10.1.1.0/24 Subnet 10.2.1.0/24 VPC 10.1.0.0/16 VPC 10.2.0.0/16

ap-southeast-2

alla no

VPC VPC Q QUALYS Qualys Appliance Jenkins CI/CD Nexus IQ Server Server One or more instances of Application Server Subnet 10.1.1.0/24 Subnet 10.2.1.0/24 VPC 10.1.0.0/16 VPC 10.2.0.0/16 ap-southeast-2

alla

RSAConference2018

VPC VPC Q QUALYS Qualys Nexus Jenkins CI/CD Appliance Server IQ Server One or more instances of Application Server Subnet 10.1.1.0/24 Subnet 10.2.1.0/24 VPC 10.1.0.0/16 VPC 10.2.0.0/16

ap-southeast-2

alla ne

RSAConference2018

all and

RSAConference2018

VPC VPC Q QUALYS Qualys Jenkins CI/CD Nexus Appliance IQ Server Server One or more instances of Application Server Subnet 10.1.1.0/24 Subnet 10.2.1.0/24 VPC 10.1.0.0/16 VPC 10.2.0.0/16 IAM ap-southeast-2

all and

RSAConference2018

ap-southeast-2

all and

https://aws.amazon.com/blogs/devops/aws-building-a-secure-cross-account-continuous-delivery-pipeline/ https://d0.awsstatic.com/aws-answers/AWS_Multi_Account_Security_Strategy.pdf

• A successful processing of source code in all of its AWS CodePipeline stages will invoke a Lambda function as a custom action, which will copy the source code into an S3 bucket in Region B. After the source code is copied into this bucket, it will trigger a similar chain of processes into the different AWS CodePipeline stages in Region B. See the following diagram.

all and

RSAConference2018

#RSAC

ID	Attack	Countermeasure Process	Countermeasure Technology
1	Vulnerability Identification	External Vuln Scanning Automation – extend to Continuous Monitoring	Qualys (VM + Cont Mon, WAS) Veracode (Dynamic)
1	Vulnerability Prevention (OS, Framework, Environment etc.)	Config Mgt Patch Mgt	Active: • IPS Passive: • Qualys (VM, Policy Compliance)
1	Vulnerability Prevention (First Party Code)	Security in SDLC	Active WAF RASP (e.g. Veracode) SDLC Veracode (Greenlight, Static)
1	Vulnerability Prevention (3 rd Party Code)	Security in SDLC	Veracode (SCA) Sonatype

asta

ID	Attack	Countermeasure Process	Countermeasure Technology
2	Vulnerability Prevention (3 rd Party Code)	Security in SDLC	Veracode (SCA) Sonatype
2	Shell Binding, Tools Download etc.	Restrict unsolicited outbound access	 Self-Healing / Tamper Resistance Application Whitelisting AWS Lambda Functions (DIY) Dome9 Clarity Diagram Dome9 Clarity VPC Log Review
2	Vulnerability Prevention	Configuration Management Patch Management	 IPS Qualys (VM, Policy Compliance)
2	Vulnerability Prevention (First Party Code)	Security in SDLC	WAF RASP (e.g. Veracode) Veracode (Greenlight, Static)

alla ne

ID	Attack	Countermeasure Process	Countermeasure Technology
3	Pivot, Vuln Identification	Restrict unsolicited traffic intra-VPC, intra-Account, VPC-WAN etc.	 Active Automation Dome9 AWS Security Group Rule Tamper Resistance Visual Dome9 Clarity Diagram Dome9 Clarity VPC Log Review Passive Qualys VM + Cont Mon

alla

ID	Attack	Countermeasure Process	Countermeasure Technology
4	Vulnerability Prevention (OS, Framework, Environment etc.)	 As Per Previous Depends on Vuln Type: Config Mgt Patch Mgt Security in SDLC 	Active: • IPS Passive: • Qualys (VM, Policy Compliance) SDLC • Veracode, Sonatype etc

alla ne

ID	Attack	Countermeasure Process	Countermeasure Technology
5	Cloud, Account Creation, Priv Escalation, Priv Abuse	 Access Controls and Permissions RBAC Permissions on business need to know/use 	 Active Dome9 IAM Protection AWS Lambda Functions (DIY)

asta

alla

Applying Security Automation in DevOps

- Look for opportunities in your SDLC to automatically identify defects earlier in the pipeline – i.e. "Shift Left"
- Examine all your security tools and investigate whether exposed API's can be leveraged to provide automated control/feedback.
- Review your cloud based architecture for opportunities to apply automated checking of configuration and continuous monitoring.
- Remember to protect the "full stack" of tools, processes and technology in your DevOps pipeline. It's not just about the output!

#RSAC

Improved DevOps Architecture Principles

Isolation for Development,

Testing,

Deployment, etc

Use Multiple Accounts

RSAConference2018

#RSAC

Account	RBAC
DevAccount	 Developers check the code into repo Store all the repositories as a single source of truth for application code. Developers have full control over this account Used as a sandbox for developers
ToolsAccount	 Central location for all the tools related to the org, incl CI/CD services Developers have limited/read-only access in this account Operations team has more control
TestAccount	 Applications using the CI/CD orchestration for test purposes deployed from this account Developers & Ops team have limited/read-only access in this account
ProdAccount	 Applications using the CI/CD orchestration tested in the ToolsAccount deployed to production from this account Developers & Ops team have limited/read-only access in this account

as and and

MATTERS #RSAC

alla ne

RSAConference2018

• A successful processing of source code in all of its AWS CodePipeline stages will invoke a Lambda function as a custom action, which will copy the source code into an S3 bucket in Region B. After the source code is copied into this bucket, it will trigger a similar chain of processes into the different AWS CodePipeline stages in Region B. See the following diagram.

at a no

RSAConference2018

#RSAC

at and

Thank you

Head office is level 8, 66 King Street, Sydney, NSW 2000, Australia. Owner of trademark and all copyright is Sense of Security Pty Ltd. Neither text or images can be reproduced without written permission.

T: 1300 922 923 T: +61 (0) 2 9290 4444 F: +61 (0) 2 9290 4455 info@senseofsecurity.com.au www.senseofsecurity.com.au

