RSA Conference 2019

San Francisco | March 4–8 | Moscone Center

SESSION ID: LAB3-W10

How to Design and Operate a DDOS Testing Program

Murray Goldschmidt

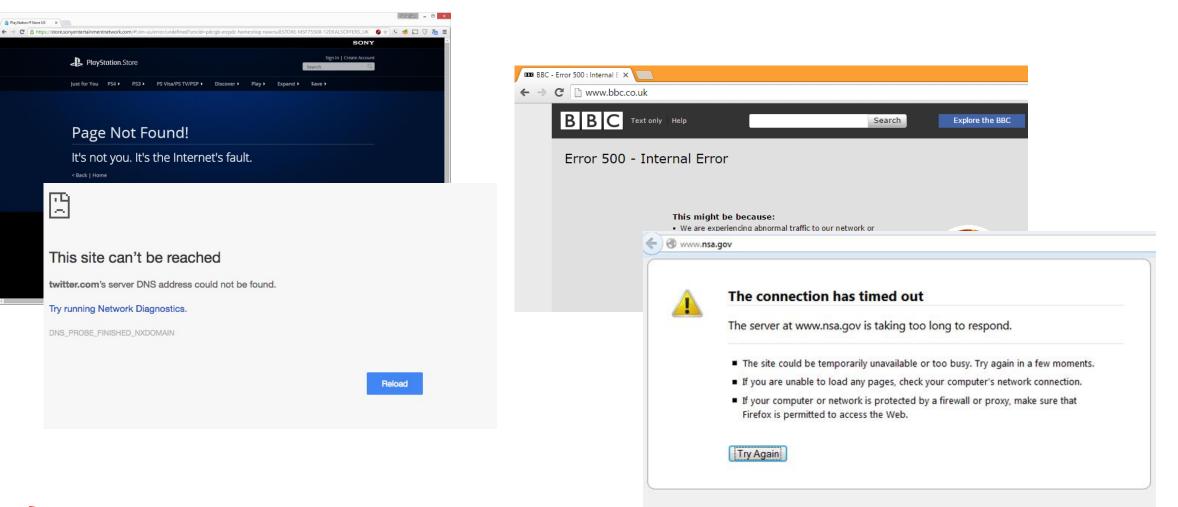
Chief Operating Officer Sense of Security Pty Ltd senseofsecurity.com.au <u>@ITsecurityAU</u>

Sharjil Khan

Principal Consultant Redwolf Security Inc redwolfsecurity.com @redwolfsecurity

AGENDA – LAB3-W10

SESSION	COVERAGE
PART 1 – 10 MINUTES	Just What does DDoS mean in 2019?
PART 2 – 60 MINUTES COLLABORATIVE Q&A	3 Interesting DDoS Failure Scenarios Q&A & Live Attack Demos 20 min - 1) Mobile Phone Login DDoS 20 min - 2) TCP Connection DDoS 20 min - 3) Volumetric SYN FLOOD DDoS
TEA/COFFEE – 15 MINUTES	15 MIN BREAK -> HANDOUTS + GAME CARDS
COLLAB – 45 MINUTES	Let's Play A Game: "ATAK WARZ!" – TABLE-TOP ATTACK/DEFENSE CARD GAME Fun for the whole family!
PART 3 – 30 MINUTES	DDoS TESTING PROGRAM Misconceptions, Impacts, Responses, Controls, Testing Program
COLLAB – 15 MINUTES	Collaborative Game Playing – in reverse
REVIEW – 15 MINUTES	CLOSE SUM IT UP - ACTION PLAN IMMEDIATE, 3 MONTH, 6 MONTH

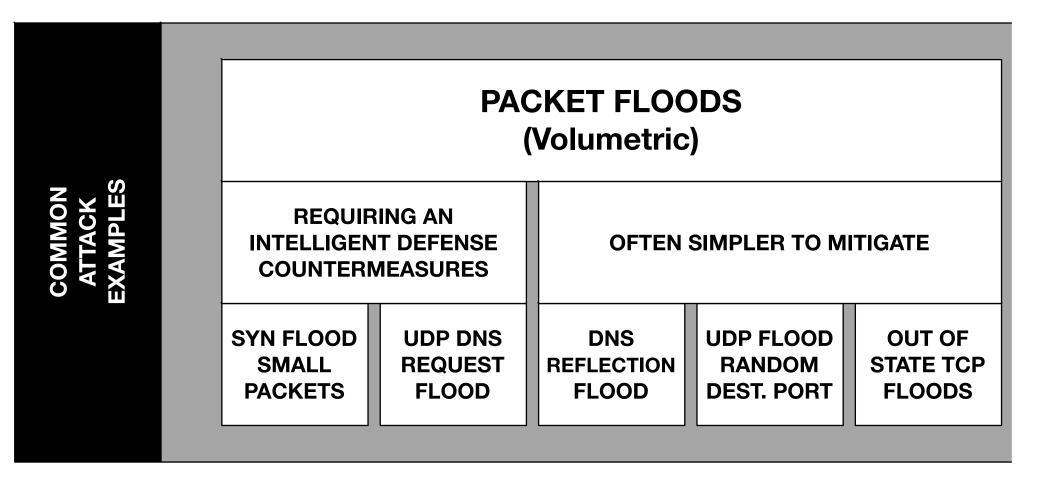

RSAConference2019

RSA[°]Conference2019

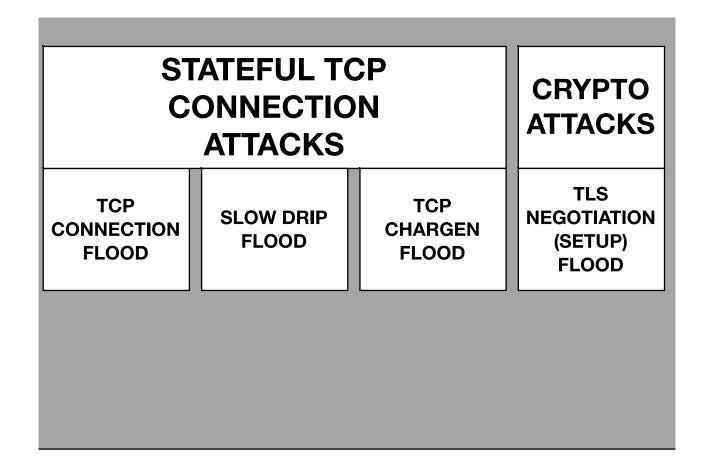
LAB3-W310 How to Design and Operate a DDOS Testing Program

What does DDoS mean in 2019?

What is a DDoS?

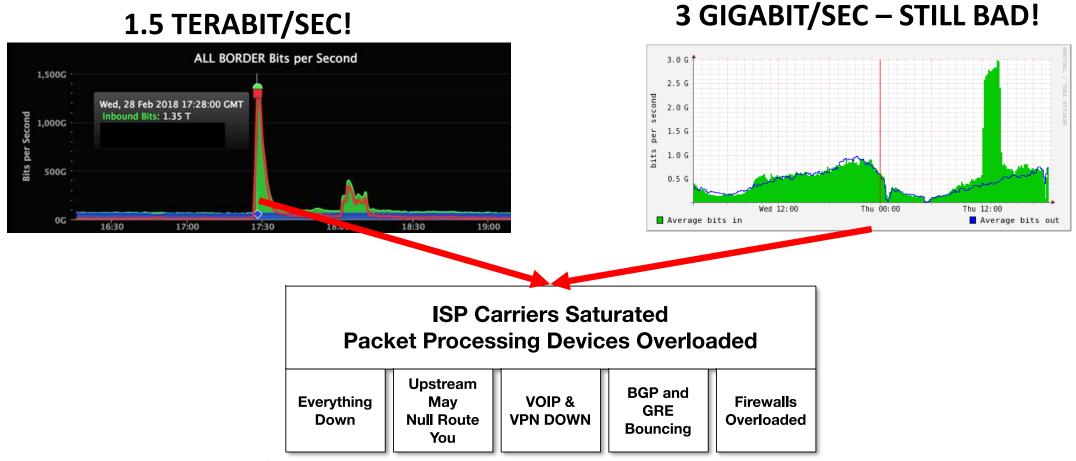


There's a whole lot of bad!



RSA Conference2019

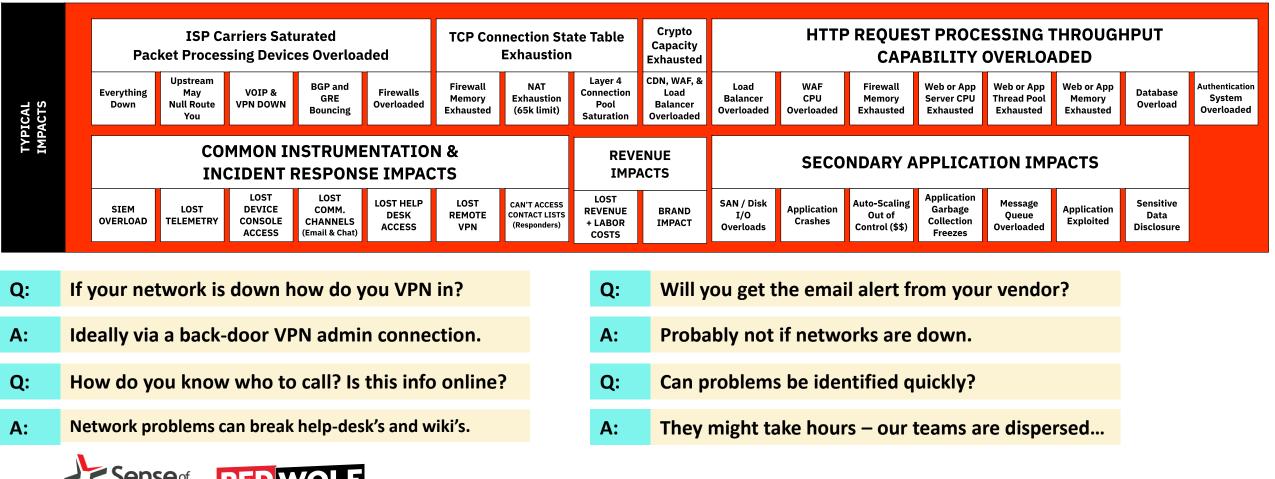
RSA Conference 2019


RSAConference2019

HTTP & HTTPS ATTACKS								
HIGH RATE (overloads)		SLOW (to avoid detection or make requests take a very long time)			REALISTIC (acts like people)			
SIMPLE HTTP(s) GET FLOOD	SIMPLE HTTP(s) POST FLOOD	LOW REQUEST RATE	SLOW PAGE READ	SLOW POST	SLOW LORIS	BROWSER HTTP(s) POST FLOOD	ADVANCED SPIDER / AUTOMATION	

RS^AConference2019

When you think "DDoS", HUGE! traffic floods come to mind


1.5 TERABIT/SEC!

RS^AConference2019

If your defenses don't work, what happens?

IMPACTS! WHAT HAPPENS IF THINGS GO WRONG!

RSAConference2019

How can you know if your defenses will work? How can you avoid impacts? Testing!

How can you know if your defenses will work? How can you avoid impacts? Testing!

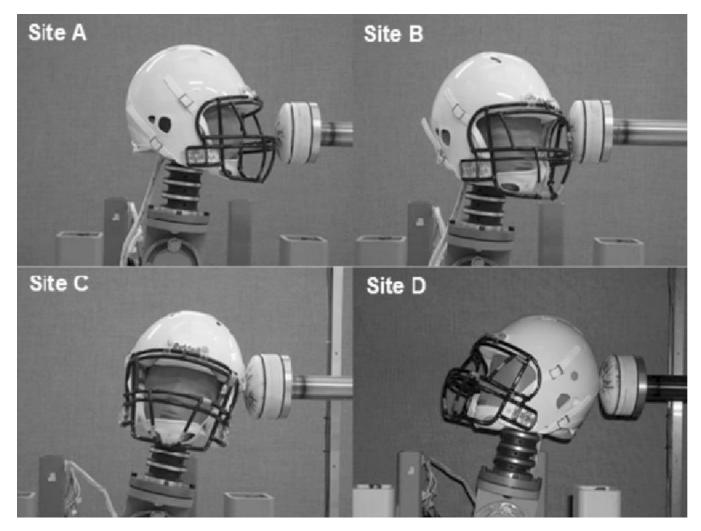
RSAConference2019

How can you know if your defenses will work? How can you avoid impacts? Testing!

RSAConference2019

Defenses will work to a point – what happens when it stops working?

Defenses will work to a point – what happens when it stops working?



RSAConference2019

You need to test multiple attack scenarios

For some reason, the IT Security industry feels it is, unlike with every other industry, it doesn't need to test and verify.

"We get attacked all the time, I see the alerts – too many alerts in fact. We don't need to test because I see attackers hammering on the defenses all the time."

What about the attacks you don't see? Do you know what attacks you can handle, which you can't? There are thousands of different kinds of attacks. There are many types of attackers – robots, script-kids and really trained adversaries. Can you be sure you can handle all of them?

RSA[°]Conference2019

RSAConference2019

RSA°Conference2019

LAB3-W310 How to Design and Operate a DDOS Testing Program

Collaborative – Interesting DDoS Attacks

Example 1 – Mobile Attack to Login Page (20 minutes)

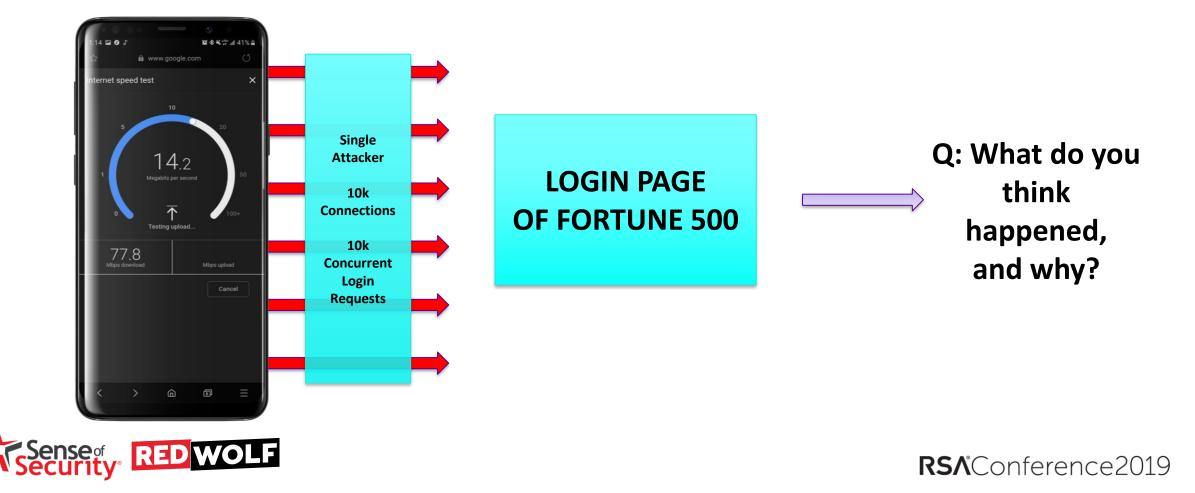
But DDoS DOES NOT HIGH BANDWIDTH to DDoS effectively

How likely is it that a single 3G Mobile Phone could DoS the main web site of a Fortune 500 company?

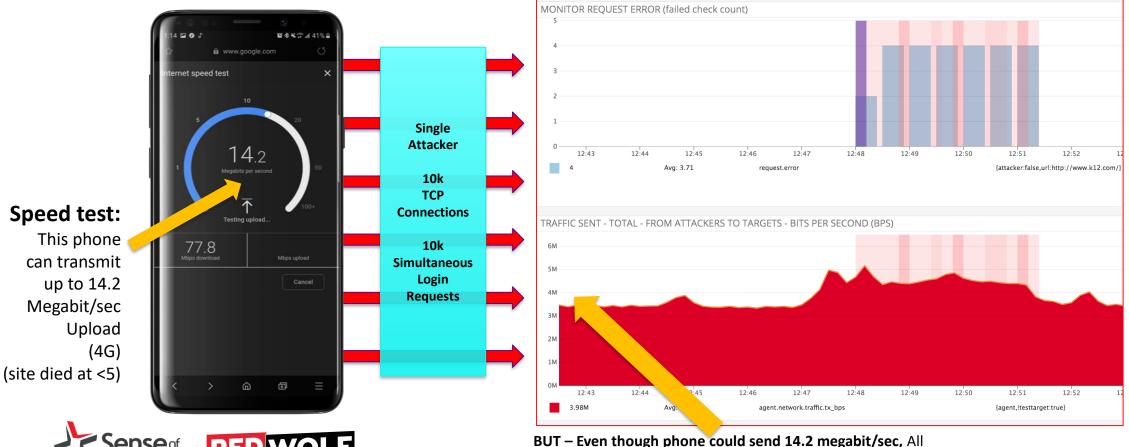
What about a 4G?

Certainly a 5G enabled device poses a considerable threat.

What about IoT devices?



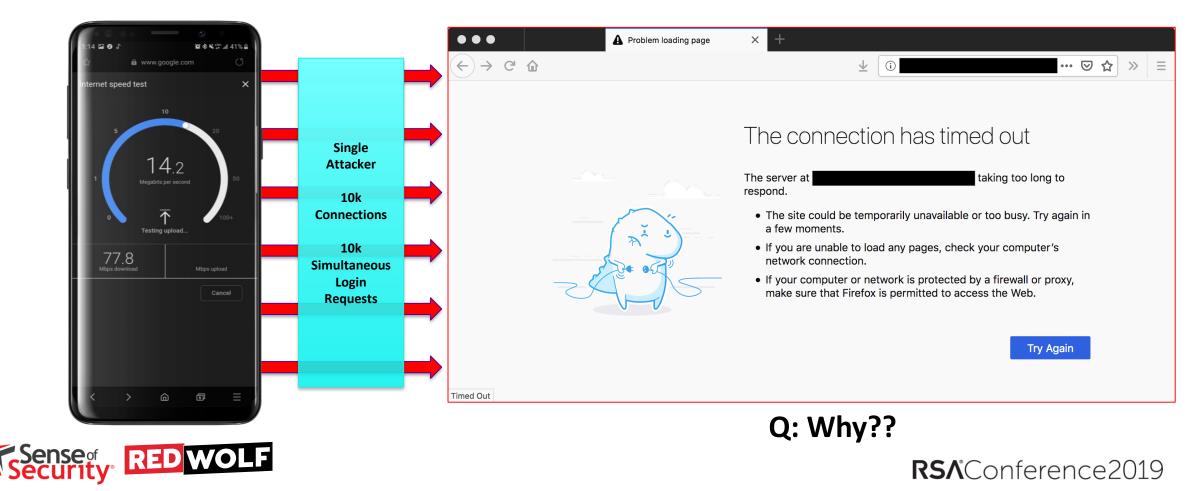
RSAConference2019


Mobile Phone Attack Example 4 megabit/sec

A DoS was performed from a <u>single</u> mobile phone, in a basement, against the main login page of a Fortune 500 (unnamed) company.

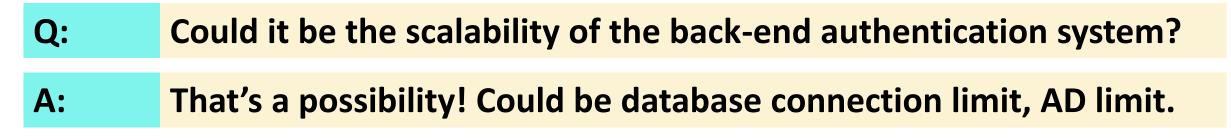
Mobile Phone Attack Example 4-5 megabit/sec

A DoS was performed from a <u>single</u> mobile phone, in a basement, against the main login page of a Fortune 500 (unnamed) company.



that was needed to disable site was 4 to 5 Megabit/sec

RSAConference2019


Mobile Phone Attack Example 4-5 megabit/sec

A DoS was performed from a <u>single</u> mobile phone, in a basement, against the main login page of a Fortune 500 (unnamed) company.

Why? Ideas?

How can a single device, with 4 megabit/sec, disable the login page of a major corporation? How is this possible? What resources were exhausted?

- Q:Could it be the number of concurrent requests the authenticationsystem could perform?
- A: That's likely too! Most enterprise web servers are set up with 'connection pools' and 'thread pools'

RSA^cConference2019

How could this abuse have been detected / blocked?

- Is it reasonable for a single device, or IP to, rather rapidly, open up 10,000 TCP Connections and start making 10,000 login requests?
 - **Q:** Could a WAF have protected the system?
 - A: Sure! If it was configured to. Do you think it was in this case?

- Q: Could there be protections to limit the # of TCP connections a client can open?
- A: Yes this can be done at many layers DDoS, Firewalls, Load Balancers, WAF's and even at the web server and application levels. Do you think it was done at all in this case?

RSA Conference 2019

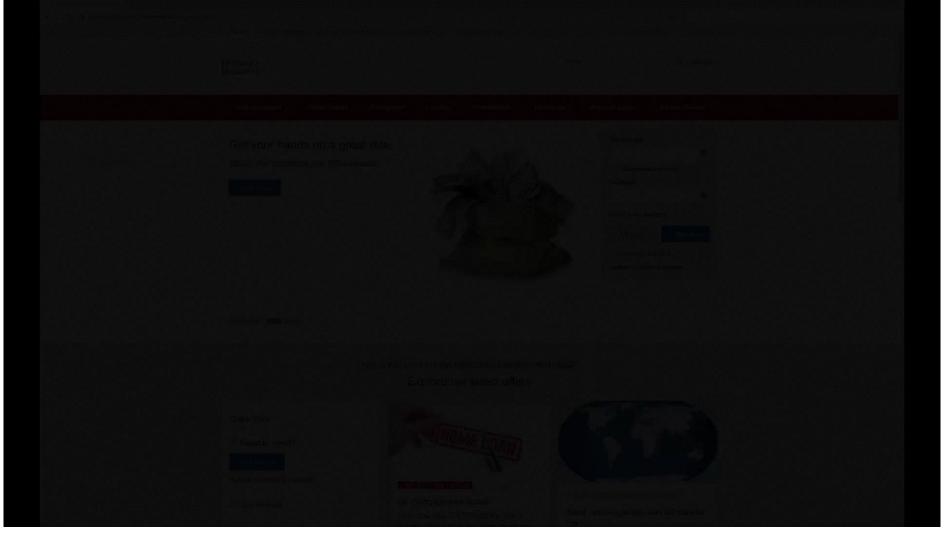
What testing uncovered

- Fortune 500 Company had never previously tested the capacity of their LOGIN page, or any Internet-Facing service – despite high \$ investment in tech.
- After testing, they knew:
 - How many logins/sec can system could sustain.
 - At what point should the WAF be engaged to protect the site.
- Implemented transactional monitoring to verify that the Login system worked – not just checking the page, but actually automating a login.
- Alerts are now only raised if the login system fails, not every time it is attacked (which are numerous).

Operations teams should only be alerted with a HIGH SEVERITY alert if the defense controls fail or site is down.

Not every time it is attacked.

RSA^cConference2019


Login Flood Attack – Showing CPU and Connection Overload

Live Demo Time

RSA Conference 2019

Login Flood Attack – Showing CPU and Connection Overload

RSA°Conference2019

LAB3-W310 How to Design and Operate a DDOS Testing Program

Collaborative – Interesting DDoS Attacks

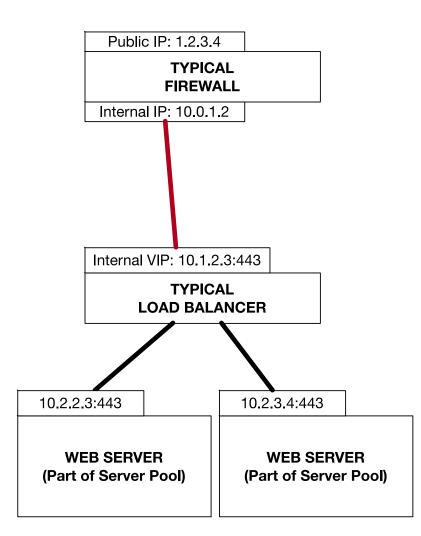
Example 2 – TCP Connection Flood DDoS (20 minutes)

Example 2: An attack that almost everyone is vulnerable to

Q: <u>How bad would it be if there was a DDoS attack:</u>

- That 99% of Internet facing services were vulnerable to
- Used very little network traffic, about 2 to 10 megabit/sec
- Could take out web sites almost instantly
- From a tiny attacker botnet of 200 IP's
- Could take out almost any TCP service in about 1 second...

A: Sit back and watch...


RS∧[°]Conference2019

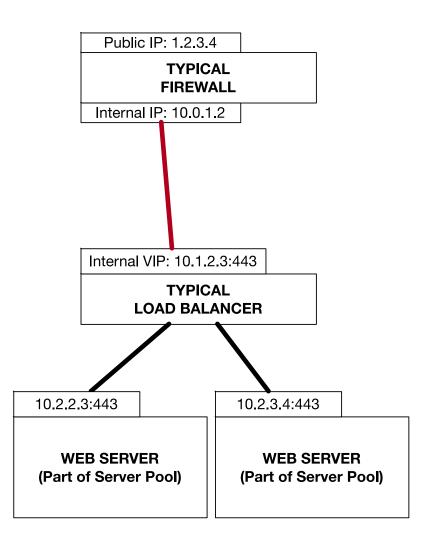
#RSAC

Do you have something like this on your network?

Q: How many of you have something that looks like this on your network?

- A <u>Firewall</u> with Internet-Facing IP's
- <u>NAT</u> (Network Address Translation) to Internal Network
- A Load Balancer "VIP" to a web site

RSAConference2019


Can you spot the problems? Or a problem?

Q: Q: Can anyone spot what the greatest vulnerability of this architecture?

Hint – it is colored RED.

There are many problems here, but there is a very significant and extremely common vulnerability here.

Can you spot it?

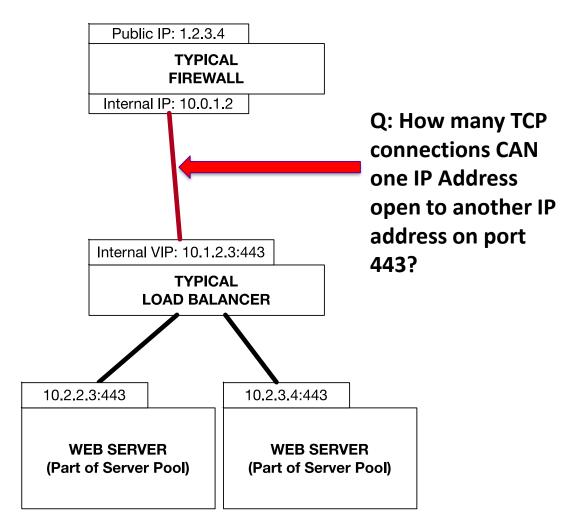
RSA Conference 2019

A hint

 32 bits

 source port
 destination port

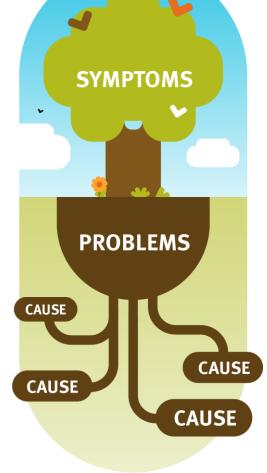
 sequence number

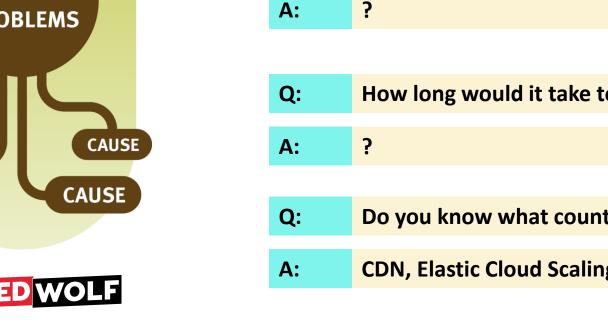

 acknowledgement number

 Hlen
 reserved

 Brown Street
 Window

 checksum
 urgent pointer


 [options]



RSA Conference 2019

Beyond defense, how would your organization begin to rootcause this problem? Identify what was happening & recover?

Q:

A:

Q:

:	What happens if an attacker opens up more than 65535 TCP connections?
:	No more connections can be opened that's what!
:	Does your organization detect TCP Connection abuse?
:	?
:	How long would it take to root-cause this problem?
:	?
:	Do you know what countermeasures are available?

CDN, Elastic Cloud Scaling, DDoS, Firewalls, Load Balancers +

RSAConference2019

Example 2: How can you know the REAL limit? A: Test it!

Q: The theoretical limit is 65535 ports. Source port 1 to 65535. BUT – the true number is often less. Sometimes by 1024 ports and sometimes by thousands more. How would you find out that limit?

A: On UNIX systems ports <1024 are typically reserved.

RSA^cConference2019

If you know how to strike and where to strike

Consider...

200 clients or attackers on the Internet

... Each opens up **400** TCP Connections

200 attackers X 400 TCP Connections Each = 80,000 TCP Connections

Is 80,000 > 65,535?

Who Wins?

Let's See!

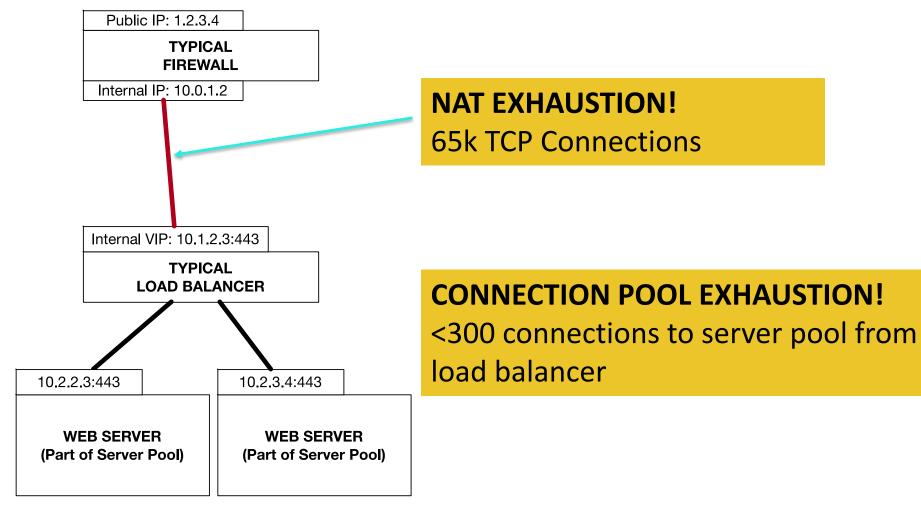
RSAConference2019

#RSAC

Connection Flood

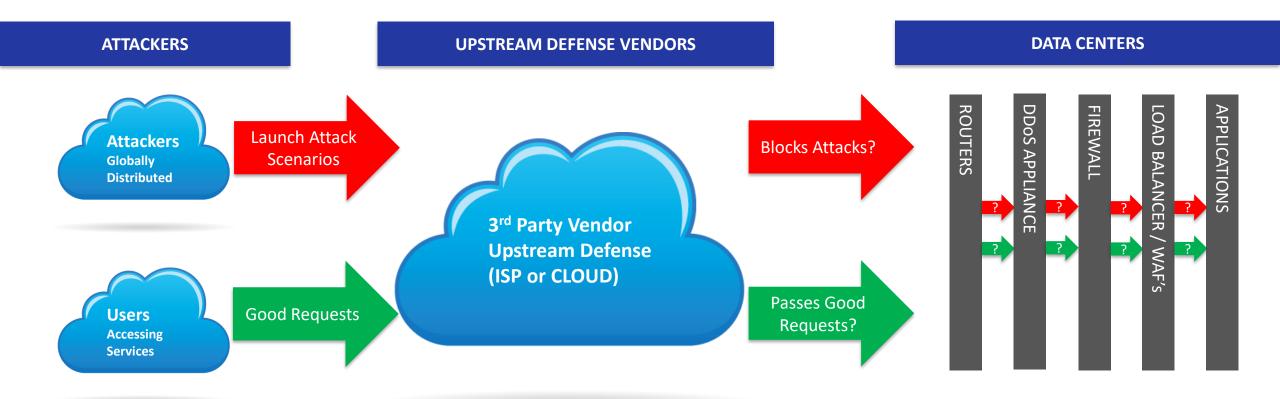
Live Demo Time

RSAConference2019


Video of Connection Flood

What are the 2 limits seen?

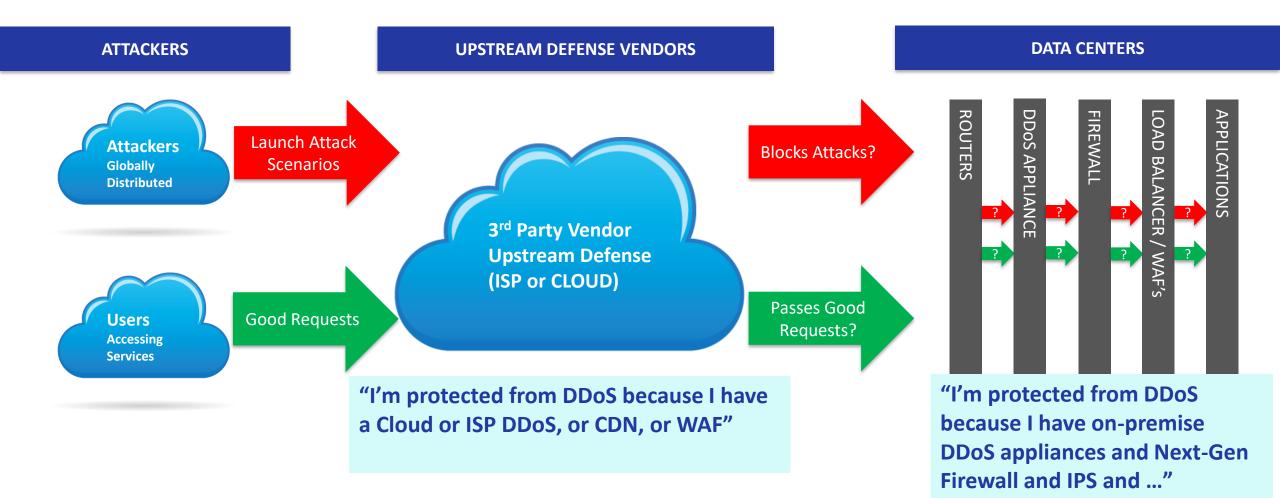
RSA[°]Conference2019


RSA°Conference2019

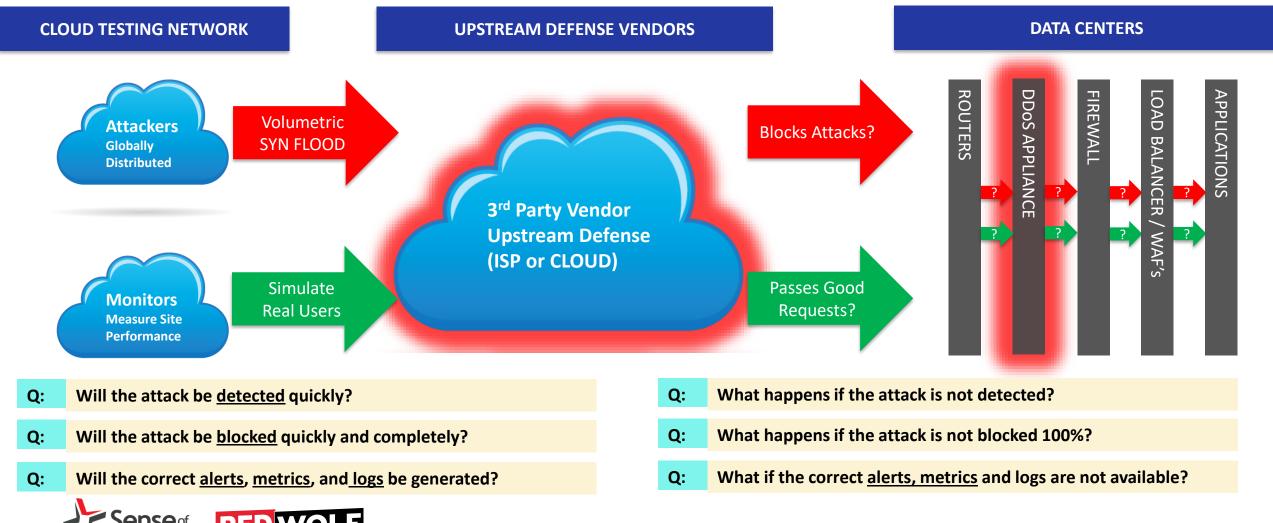
LAB3-W310 How to Design and Operate a DDOS Testing Program

Collaborative – Interesting DDoS Attacks

Example 2 – Volumetric SYN FLOOD (20 minutes)

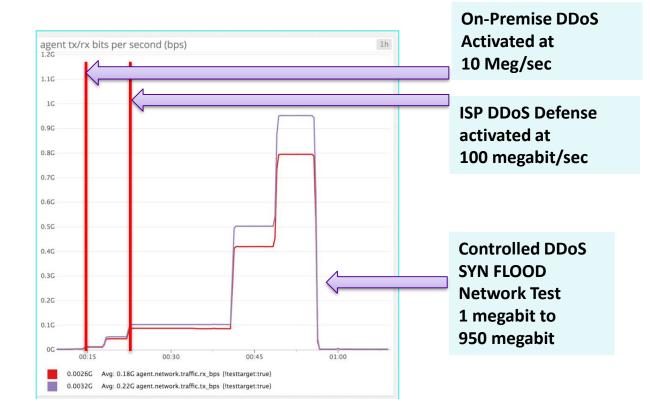

Let's look at a simple 2 layered DDoS defense system: "Cloud or ISP DDoS Defense" + "Local DDoS Appliance"

RSAConference2019


Does having the device or paying a 3rd party to manage DDoS defenses^{AC} mean it will work?

RSA Conference2019

Let's find out how well it works! Let's <u>TEST!</u> Upstream DDoS (ISP or Cloud) & On Premise DDoS Appliance


RS^AConference2019

TEST SCENARIO 1: SYN FLOOD VOLUMETRIC DDoS

A SYN FLOOD DDoS Test was performed to test ISP and On-Premise Defenses

> Tested at specific traffic levels: 1 Megabit/sec 10 Megabit/sec 100 Megabit/sec 500 Megabit/sec 950 Megabit/sec

Q:	Was the attack be <u>detected</u> quickly?	YES
Q:	Was the attack be <u>blocked</u> quickly and completely?	NO
Q:	Were the correct <u>alerts</u> , <u>metrics</u> , and <u>logs</u> be generated?	NO

RSA Conference 2019

In this case it was the Firewall CPU that was overloaded It logged so many deny packets it even took out the SIEM

- Q: What can happen if a Firewall is overloaded?
- A: If a Firewall is overloaded, many things may happen:
 - Packet Loss (increased latency)
 - Too much DENY logging (can overload SIEM)
 - Drops established connections
 - Drops VPN's
 - Impacts VOIP (voice communications impossible)

RS∧[°]Conference2019

How can you know if your firewall is vulnerable? How can you know if your Defenses leak attack traffic?

Q: What could cause periodic bursts of attack traffic to leak through?

- Defense Configuration: Type of countermeasure being used is it using correct countermeasure? For SYN FLOOD's there are a few, and they work differently.
 - IP Blacklist Timeouts: A blacklist may drop packets for a few minutes after that you might see a short burst of attacker traffic for a short moment!
 - Low and Slow attacks that "come in under the radar" don't trigger defenses
- Do you know what countermeasures your DDoS protection has activated?
 - Do you know if it will leak traffic?
 - Do you know if this could overload your firewall or other devices?
 - Do you monitor firewalls, load balancers, WAF's and services for various overloads?

A:

Q:

RS∧[°]Conference2019

But after 10 minutes bursts of attack traffic started leaking past the DDoS defense and the Firewall CPU shot to 100%

WHAT TESTING UNCOVERED

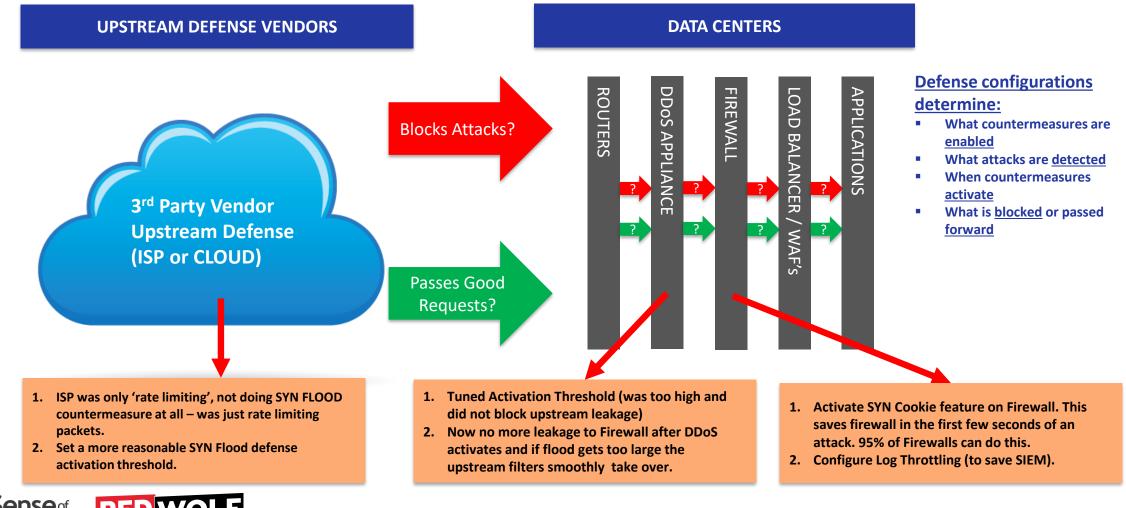
1 DDoS defenses did activate and begin blocking attackers as expected (good!)

2 DDoS <u>defenses leaked attack traffic</u> AFTER 10 minutes

3 <u>The firewall was vulnerable</u> to this attack traffic leakage and it's CPU went to 100% and packet loss was seen

(4) <u>SIEM was overloaded and Operation's couldn't see</u> what was going on.

5 <u>Vendor unable to stop all leakage</u>. Vendor defense SOC said attack leakage is "normal" and "expected".


!!!! Don't Forget to Read the Small Print in Your Contracts !!!!

5 Vendor unable to stop all leakage. Vendor defense SOC said attack leakage is "normal" and "expected".

RSA Conference 2019

Q: How was this corrected? A: By tuning <u>three</u> configurations and re-testing

RSAConference2019

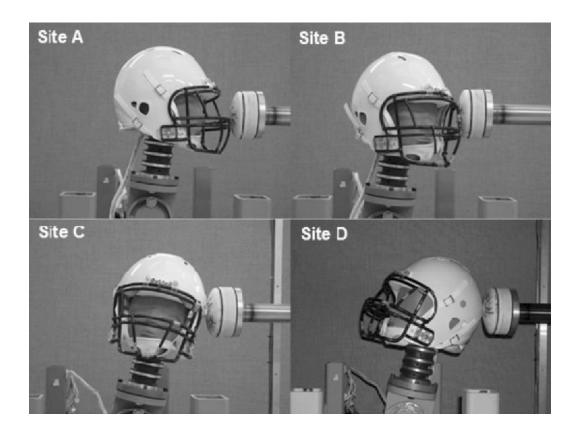
Unexpected Consequences – It's all connected? A system view is necessary

Q :	How many have a SIEM / Logging System?
------------	--

Q: How many have Firewalls?

- **Q:** Is it common for Firewalls to log 'denies'?
- Q: What happens if a Firewall has to log 10k to 20k+ denies every second? A DDoS attack can easily cause that with 10 megabit/sec of traffic.
- Q: Have you benchmarked your SIEM? Do you have licenses that limit the event rate? Do you know how many events your I/O Disk systems can handle? Does your SIEM perform well under heavy load?

A:


<u>A DDoS Testing Program</u> must take a system-wide view and not a device view – the scope must include all devices in path (Firewalls, Load Balancers, WAF's, Servers) as well as monitoring and logging systems – they are part of a connected system.

...

RSA Conference 2019

Lessons learned

- Devices don't operate in isolation, they are part of a system – you test the system.
- Without testing you'd probably never get the devices configured optimally. You'd never get the full benefit / ROI from the defenses.
- After testing you can prove you can handle the scenarios you've tested. Without testing, how confident can you be?

RSA Conference 2019

Is Cloud different?

While Cloud systems are more scalable, they still are just groups of regular computers processing things.

Some problems are the same. Some are different.

We'll give an example of testing cloud scaling and cloud WAF defenses after the break.

Q: Does anyone here think that something like the AWS stateful security group is limitless in its capacity?

A: Everything has limits – everything. The TCP NAT exhaustion we performed was on AWS. Also, later on more detail.

Cloud scales Cloud also fails Nothing is perfect ©

RSA Conference 2019

There are actually MANY MANY other kinds of DDoS attacks beyond high bandwidth packet floods

FOR THE NEXT FEW SLIDES – EXPECT TO BE OVERWHELMED ③

We are going to show how complex this situation is

Then we'll talk about how to tackle it

RS∧[°]Conference2019

There are actually MANY MANY other kinds of DDoS attacks beyond high bandwidth packet floods

COMMON ATTACK SCENARIOS - WHAT IF _____ HAPPENED?

			CKET FLOC Volumetric				ATEFUL TO ONNECTIO ATTACKS	N	CRYPTO ATTACKS					HTTPS ACKS			
	REQUIR INTELLIGEN COUNTERN	T DEFENSE	OFTEN SIMPLER TO MITIGATE			TCP CONNECTION FLOOD	SLOW DRIP FLOOD	TCP CHARGEN FLOOD	TLS NEGOTIATION (SETUP) FLOOD		RATE loads)	(to avoid c			ests take a		.ISTIC e people)
•	SYN FLOOD SMALL PACKETS	ERMEASURES D UDP DNS DNS UDP FLOOD OUT OF REQUEST REFLECTION RANDOM STATE TC			OUT OF STATE TCP FLOODS					SIMPLE HTTP(s) GET FLOOD	SIMPLE HTTP(s) POST FLOOD	LOW REQUEST RATE	SLOW PAGE READ	SLOW POST	SLOW LORIS	BROWSER HTTP(s) POST FLOOD	ADVANCED SPIDER / AUTOMATION

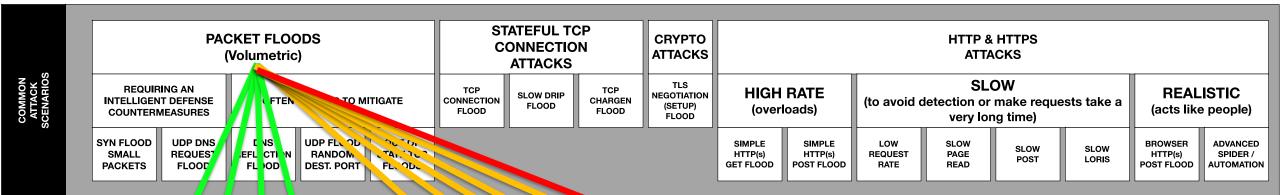
RSA Conference 2019

For every attack there are many available countermeasures

COMMON ATTACK SCENARIOS - WHAT IF _____ HAPPENED?

			CKET FLOC				ATEFUL TO ONNECTIO ATTACKS	N	CRYPTO ATTACKS					A HTTPS ACKS			
COMMON ATTACK SCENARIOS	INTELLIGEN	REQUIRING AN INTELLIGENT DEFENSE COUNTERMEASURES		ITIGATE	TCP CONNECTION FLOOD	SLOW DRIP FLOOD	TCP CHARGEN FLOOD	TLS NEGOTIATION (SETUP) FLOOD		RATE oads)	(to avoid c		OW make reque ng time)	ests take a	REAL (acts like		
	SYN FLOOD SMALL PACKETS	UDP DNS REQUEST FLOOD	DNS REFLECTION FLOOD	UDP FLOOD RANDOM DEST. PORT	OUT OF STATE TCP FLOODS					SIMPLE HTTP(s) GET FLOOD	SIMPLE HTTP(s) POST FLOOD	LOW REQUEST RATE	SLOW PAGE READ	SLOW POST	SLOW LORIS	BROWSER HTTP(s) POST FLOOD	ADVANCED SPIDER / AUTOMATION

COMMON DEFENSE TECHNOLOGIES (Vendors, Appliances, Automations)


COMN	ION CLO	UD DEFE APPRO		HNOLOG	IES &		COMMON P DEFENS CHNOLOGI			соммоі	N ON-PRI	EMISE DI	EFENSES	TECHNO	DLOGIES	
Cloud Routed Scrubbing DDoS	Cloud Layer 7 Proxy	Cloud Layer 7 Proxy with WAF	Cloud Layer 4 TCP Proxy	Pubic Cloud (Auto-Scale, 'Lambda')	Cloud DLP	ISP Packet Scrubbing DDoS	ISP Layer 7 Defense (Proxy)	ISP Managed ACL / FW	Router ACL's	On-Premise DDoS Appliance	On-Premise Next-Gen Firewall	On-Premise IPS	On-Premise WAF	On-Premise Load Balancer Configuration	On-Premise Data Leak Prevention	On-Premise Anti Virus
Always-On	On-Demand	Automatic Defense	"Expert" Guided Defense	Default Defense Policy Config	Customized Defense Configuration	IP Reputation Threat Blocking			Mail SPAM & Phishing Filters	Hardened Application Logic Defenses	Network Monitoring Correlation & Response	Active SIEM Correlation	Behavioral Analytics & Automated Response	IP Reputation Correlation & Response	Vendor API Integration & Automation	Automation & Orchestration Frameworks

RSA^cConference2019

Q: For volumetric DDoS packet flood attacks, what countermeasures are common?

COMMON ATTACK SCENARIOS - WHAT IF _____ HAPPENED?

COMMON DEFENSE TECHNOLOGIES (Vendors, Appliances, Automations)

	ON C'.O	UD I EFE AP PRO		HNOLOG	IES &		COMMON PDEFINS			соммо	N ON-PR	EMISE DI	EFENSES		DLOGIES	
Cloud Routed Scrubbing DDoS	Cloud Layer 7 Proxy	Cloud Layer 7 Proxy with WAF	Cloud Layer 4 TCP Proxy	Pubic Cloud (Auto-Scale, 'Lambda')	Cloud DLP	ISP Packet Scrubbing DDoS	ISP Layer 7 Defense (Proxy)	ISP Managed ACL / FW	Router ACL's	On-Premise DDoS Appliance	On-Premise Next-Gen Firewall	On-Premise IPS	On-Premise WAF	On-Premise Load Balancer Configuration	On-Premise Data Leak Prevention	On-Premise Anti Virus
Always-On	On-Demand	Automatic Defense	"Expert" Guided Defense	Default Defense Policy Config	Customized Defense Configuration	IP Reputation Threat Blocking			Mail SPAM & Phishing Filters	Hardened Application Logic Defenses	Network Monitoring Correlation & Response	Active SIEM Correlation	Behavioral Analytics & Automated Response	IP Reputation Correlation & Response	Vendor API Integration & Automation	Automation & Orchestration Frameworks

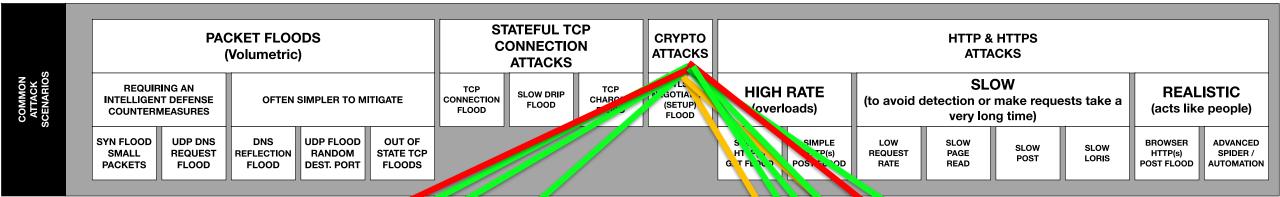
RSA Conference 2019

Q: For stateful TCP connection attacks, what are the systems used?

COMMON ATTACK SCENARIOS - WHAT IF _____ HAPPENED?

			CKET FLOC			cc	ATEFUL T DNNECTI ATZ		CRYPTO ATTACKS				HTTP & ATTA	HTTPS ACKS			
COMMON ATTACK SCENARIOS	REQUIR INTELLIGEN COUNTERM	T DEFENSE	OFTEN	SIMPLER TO M	ITIGATE		SLOW H P FLO D	Pegen ,	TLS NEGOTIATION (SETUP) OOD	HIGH (overl	RATE oads)	(to avoid c	SL(letection or very lor	make reque	ests take a	REAL (acts like	ISTIC e people)
	SYN FLOOD SMALL PACKETS	UDP DNS REQUEST FLOOD	DNS REFLECTION FLOOD	UDP FLOOD RANDOM DEST. PORT	OUT OF STATE TOP FLC ODS						SIMPLE HTTP(s) POST FLOOD	LOW REQUEST RATE	SLOW PAGE READ	SLOW POST	SLOW LORIS	BROWSER HTTP(s) POST FLOOD	ADVANCED SPIDER / AUTOMATION

COMMON DEFENSE TECHNOLOGIES (Vendors, Appliances, Automations)


COMM	ION JU	UD DEFE APPPJ	/	INOLOG	IES &		CO <mark>, 1MON</mark> SP DUFENS CHNCLOGI			COMMO		EMISE D	EFENSES	5 TECHNO	DLOGIES	
Cloud Routed Scrubbing DDoS	Cloud Layer 7 Proxy	Cloud Layer 7 Proxy with WAF	Cloud Layer 4 TCP Proxy	Pubic Cloud (Auto-Scale, 'Lambda')	Cloud DLP	ISP Packet Scrubbing DDoS	ISP Layer 7 Defense (Proxy)	ISP Managed ACL / FW	Rouver ACL's	On-Premise DDoS Appliance	Oi, Premise Nex, Gen Firewa '	n-Premise ™S	On-Premise WAF	On-Premise Load Balancer Configuration	On-Premise Data Leak Prevention	On-Premise Anti Virus
Always-On	On-Demand	Automatic Defense	"Expert" Guided Defense	Default Defense Policy Config	Customized Defense Configuration	IP Reputation Threat Blocking			Mail SPAM & Phishing Filters	Hardened Application Logic Defenses	Network Monitoring Correlation & Response	Active SIEM Correlation	Behavioral Analytics & Automated Response	IP Reputation Correlation & Response	Vendor API Integration & Automation	Automation & Orchestration Frameworks

Q: For cryptographic attacks, which exhaust SSL/TLS handshake capacity, which are the best defenses?

COMMON ATTACK SCENARIOS - WHAT IF _____ HAPPENED?

COMMON DEFENSE TECHNOLOGIES (Vendors, Appliances, Automations)

COMM	ION CLO		NSE TEC	HNOLOG	IFد &		COMMON P DEFENS CHNOLOGI			CCMN OI	איז-אס א	EMISED	EFFNSES	5 TECHNO	DLOGIES	
Cloud Routed Scrubbing DDoS	Cloud Layer 7 Proxy	Cloud Layer 7 Proxy with WAF	Cloud Layer 4 TCP Proxy	Pubic Cloud (Auto-Scale, 'Lambda')	Cloud DLP	ISP Packet Scrubbing DDoS	ISP Layer 7 Defense (Proxy)	ISP Managed ACL / FW	Router ACL's	On-Premise DDoS Appliance	On-Pren 'se Jext-Gen L'rewall	On-Cremise	On-Premise WAF	On-Premise Load Balancer Configuration	On-Premise Data Leak Prevention	On-Premise Anti Virus
Always-On	On-Demand	Automatic Defense	"Expert" Guided Defense	Default Defense Policy Config	Customized Defense Configuration	IP Reputation Threat Blocking			Mail SPAM & Phishing Filters	Hardened Application Logic Defenses	Network Monitoring Correlation & Response	Active SIEM Correlation	Behavioral Analytics & Automated Response	IP Reputation Correlation & Response	Vendor API Integration & Automation	Automation & Orchestration Frameworks

RSA^cConference2019

Q: For HTTP and HTTPS Attacks, what are the best defenses?

#RSAC

RS^AConference2019

COMMON ATTACK SCENARIOS - WHAT IF _____ HAPPENED?

			CKET FLOC (Volumetric			C	ATEFUL TO ONNECTIO ATTACKS	N	CRYPTO ATTACKS				P & HI FTACK				
COMMON ATTACK SCENARIOS	INTELLIGE	RING AN NT DEFENSE MEASURES	OFTEN	SIMPLER TO M	ITIGATE	TCP CONNECTION FLOOD	SLOW DRIP FLOOD	TCP CHARGEN FLOOD	TLS NEGOTIATION (SETUP) FLOOD	HIGH RATE (overloads)	<i>1</i>	det actic		V ke requ t. me)	ests take a	REAL (acts like	
	SYN FLOOD SMALL PACKETS	UDP DNS REQUEST FLOOD	DNS REFLECTION FLOOD	UDP FLOOD RANDOM DEST. PORT	OUT OF STATE TCP FLOODS					Post FLOO	LOW REQUEST RATE	S W GE EAD		SL W PO, T	SLOW LORIS	BROWSER HTTP(s) POST FLOOD	ADVANCED SPIDER / AUTOMATION

COMMON DEFENSE TECHNOLOGIES Crendors, Appliances, Automations)

	СОММ	ION CLOU	JD DEEE APPPC		TN'CLUG	125 &	IS	COMMON P DEFENS CHNOLO J1			соммс	N OM-FRI	EMISE D	E FLINSL	5 TECHNO	DLOGIES	
R Sci	Cloud Routed rubbing DDoS	Cloud Layer 7 Proxy	Cloud Layer 7 Proxy with WAF	Cloud Layer 4 TCP Proxy	Pubic Cloud (Auto-Scale, 'Lambda')	Cloud DLP	ISP Packet Scrubbing DDoS	ISP Layer 7 Defense (Proxy)	ISP Managed ACL / FW	Router ACL's	On-Premise DDoS Appliance	n-Premise Next-Gen Firewall	On-Premis IPS)n-Premise WAF	On-Premise Load Balancer onfiguration	On-Premise Data Leak Prevention	On-Premise Anti Virus
Alv	ways-On	On-Demand	Automatic Defense	"Expert" Guided Defense	Default Defense Policy Config	Customized Defense Configuration	IP Reputation Threat Blocking			Mail SPAM & Phishing Filters	Hardened Application Logic Defenses	Network Monitoring Correlation & Response	Active SIEM Correlation	Behavioral Analytics & Automated Response	IP Reputation Correlation & Response	Vendor API Integration & Automation	Automation & Orchestration Frameworks

Confused yet? Overwhelmed?

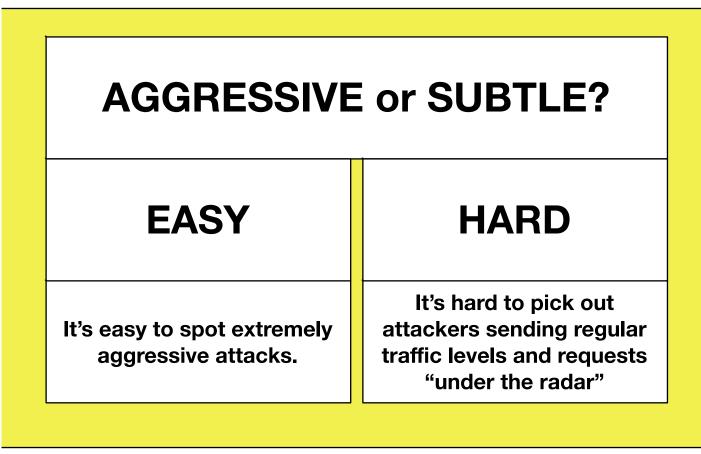
There are a lot of different kinds of attacks.

There are a lot of defense technologies.

No one (normal) can easily answer what kind of defense is best for a certain kind of attack.

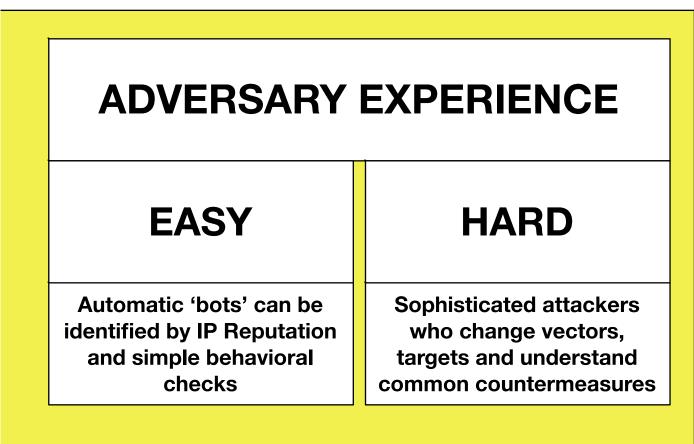
We'll give you a few more examples & then suggest a solution – a way to make it make sense.

RSAConference2019


It's not just the kind of attack, it's the 'style' of the attack.

	"SCRIPT KID" o	or "TARGETED"	REPETITIVE o	or REALISTIC?
EVASIVE ECHNIQUES	EASY	HARD	EASY	HARD
F	Attacks with known signatures and thresholds are easiest to handle	Attacks that target your specific applications and services are not 'out of the box'	It's easier to spot repetitive robotic attacks	It's harder to spot attackers that randomize and vary their requests and timings

RSAConference2019


It's not just the kind of attack, it's the 'style' of the attack.

RSA Conference 2019

It's not just the kind of attack, it's the 'style' of the attack.

RSAConference2019

Q: Why *aren't* these great for many HTTP and HTTPS?

COMMON DEFENSE TECHNOLOGIES (Vendors, Appliances, Automations)

COMM	ION CLO	UD DEFE APPRO		HNOLOG	IES &		COMMON SP DEFENS CHNOLOGI		COMMON ON-PREMISE DEFENSES TECHNOLOGIES									
Cloud Routed Scrubbing DDoS	Cloud Layer 7 Proxy	Cloud Layer 7 Proxy with WAF	Cloud Layer 4 TCP Proxy	Pubic Cloud (Auto-Scale, 'Lambda')	Cloud DLP	ISP Packet Scrubbing DDoS	ISP Layer 7 Defense (Proxy)	ISP Managed ACL / FW	Router ACL's	On-Premise DDoS Appliance	On-Premise Next-Gen Firewall	On-Premise IPS	On-Premise WAF	On-Premise Load Balancer Configuration	On-Premise Data Leak Prevention	On-Premise Anti Virus		
Always-On	On-Demand	Automatic Defense	"Expert" Guided Defense	Default Defense Policy Config	Customized Defense Configuration	IP Reputation Threat Blocking			Mail SPAM & Phishing Filters	Hardened Application Logic Defenses	Network Monitoring Correlation & Response	Active SIEM Correlation	Behavioral Analytics & Automated Response	IP Reputation Correlation & Response	Vendor API Integration & Automation	Automation & Orchestration Frameworks		

Q: Why *aren't* these great for many HTTP and HTTPS?

COMMON DEFENSE TECHNOLOGIES (Vendors, Appliances, Automations)

	COMM	MON CLO		NSE TEC	HNOLOG	IES &		COMMON SP DEFENS CHNOLOG	SE E	COMMON ON-PREMISE DEFENSES TECHNOLOGIES									
DEFENSES TECHNOLOIES	Cloud Routed Scrubbing DDoS	Cloud Layer 7 Proxy	Cloud Layer 7 Proxy with WAF	Cloud Layer 4 TCP Proxy	Pubic Cloud (Auto-Scale, 'Lambda')	Cloud DLP	ISP Packet Scrubbing DDoS	ISP Layer 7 Defense (Proxy)	ISP Managed ACL / FW	Router ACL's	On-Premise DDoS Appliance	On-Premise Next-Gen Firewall	On-Premise IPS	On-Premise WAF	On-Premise Load Balancer Configuration	On-Premise Data Leak Prevention	On-Premise Anti Virus		
	Always-On	On-Demand	Automatic Defense	"Expert" Guided Defense	Default Defense Policy Config	Customized Defense Configuration	IP Reputation Threat Blocking			Mail SPAM & Phishing Filters	Hardened Application Logic Defenses	Network Monitoring Correlation & Response	Active SIEM Correlation	Behavioral Analytics & Automated Response	IP Reputation Correlation & Response	Vendor API Integration & Automation	Automation & Orchestration Frameworks		

Cloud (and ISP) Packet Scrubbing DDoS has problems with:

- Slow HTTP and HTTPS Requests
- HTTPS (decryption) can't see into the payload
- HTTP KEEP-ALIVE (one TCP connection shared for many requests)
- Doesn't often see replies (it's usually asymmetric)
- There are certain kinds of attacks that can be stopped, for HTTP, certain TLS abuses, but in general the attacks must be very high in rate to be detected in the cloud – usually the site will go down sooner.

Cloud Layer 4:

Not Layer 7 Aware at all (mainly used for TCP Forwarding)

Public Cloud Scaling

- It CAN scale and Scale and SCALE but you PAY for it! (\$\$\$)
- Scaling is not a really defense you always need avoid processing attack requests
- Cloud without DDoS protection also does not survive.

On-Premise:


- Appliances can do pretty well, but if they are not set up for HTTPS decryption there will be limitations and attacks will go through.
- Next-Gen Firewalls strangely do very little at Layer 7 re: DDoS protection. Even if they have the capability, it is almost never enabled.
- IPS can detect many types of attacks, but most IPS do not decrypt HTTPS. If they do they can go from 'red' to green'.

Feels hopeless? Don't Give Up!

DDoS is not one problem anymore than "Security" is a simple thing.

You can break the problem down and deal each attack "category" & "style"

Security REDWOLF

#RSAC

Just about to break for coffee!

Defense against the dark arts worksheet - External Attacks

RED WOLF

ecurity	
COMMON ATTACK SCENARIOS - WHAT IF _	HAPPENED?

	I			KET FLO			0	ATEFUL TO ONNECTIO ATTACKS	N	CRYPTO ATTACKS		HTTP & HTTPS ATTACKS						
ATACK SCENNE OS		REQUIRING AN INTELLIGENT DEPENSE COUNTERMEASURES OFTEN SI MPLER TO MI TI GATE O						SLOW DRI P FLOOD	TCP CHARGEN FLOOD	TLS NEGOTIATION (SETUP) FLOOD		RATE loads)	(to avoid o	SL/ letection or very lor	make reque	sts take a	REAL (acts like	
		SYN FLOOD SMALL PACKETS	UDP DNS REQUEST FLOOD	DNS REFLECTION FLOOD	UDP FLOOD RANDOM DEST. PORT	OUT OF STATE TOP FLOODS					SIMPLE HTTP(s) GET FLOOD	SIMPLE HTTP(s) POST RLOOD	LOW REQUEST RATE	SLOW PAGE READ	SLOW POST	SLOW LORIS	BROWSER HTTP(k) POST FLOOD	ADVANCED SPIDER/ AUTOMATION

ATTACK VARIATIONS - EVASIVENESS - INTENSITY

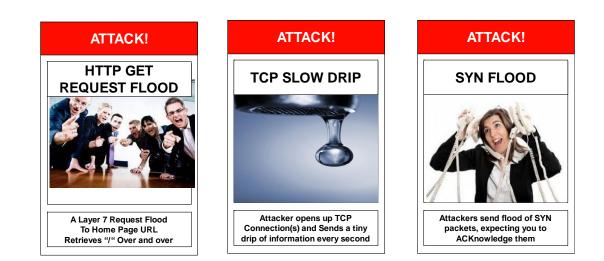
	AGGRESSI V	/E or SLOW?	REPETITIVE	or RANDOM?	"SCRIPT KID" or "TARGETED"			ADVERSARY	EXPERIENCE
RIATIONS	EASY	HARD	EASY	HARD	EASY	HARD		EASY	HARD
*	It's easy to spot extremely high speed and aggressive attacks	It's hard to pick out attackers sending regular traffic levels and requests "under the radar"	It's easier to spot repetitive requests for the same resource	It's harder to spot attacks that randomize and vary their requests and timings	Obvious attacks with known attack signatures and behaviors are easiest to handle	Attacks that target your specific applications and services are not 'out of the box'		Automatic 'bots' can be identified by IP Reputation, signatures and behavioral analysis	Sophiaticated attackers who change vectors, targets and understand common countermeasures

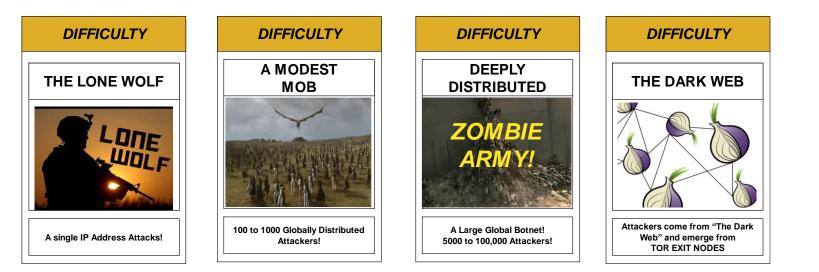
COMMON DEFENSE TECHNOLOGIES (Vendors, Appliances, Automations)

	COMMON CLOUD DEFENSE TECHNOLOGIES & APPROACHES							COMMON ISP DEFENSE TECHNOLOGIES			COMMON ON-PREMISE DEFENSES TECHNOLOGIES								
001070-W001	Cloud Routed Scrubbing DDoS	Cloud Layer 7 Prosy	Cloud Layer 7 Proxy with WAF	Cloud Layer 4 TCP Proxy	Pubic Cloud (Auto-Scale, 'Lambda')	Cloud DLP	I SP Packet Scrubbing DDoS	1 SP Layer 7 Defense (Proxy)	I SP Managed ACL / FW	Router ACL's	On-Premise DDoS Appliance	On-Premise Next-Gen Firewall	On-Premise IPS	On-Premise WAF	On-Premise Load Balancer Configuration	On-Premise Data Leak Prevention	On-Premise Anti Virus		
	Always-On	On-Demand	Automatic Defense	"Expert" Guided Defense	Default Defense Policy Config	Customized Defense Configuration	1P Reputation Threat Blocking			Mail SPAM & Phishing Filters	Hardened Application Logic Defenses	Network Monitoring Correlation & Response	Active SIEM Correlation	Behavioral Analytics & Automated Response	1P Reputation Correlation & Response	Vendor API Integration & Automation	Automation & Orchestration Frameworks		

IMPACTS! WHAT HAPPENS IF THINGS GO WRONG!

	Pac	ISP C	arriers Sat Ising Devic		ded	TCP Connection State Table Exhaustion			Crypto Capacity Exhausted							HPUT		
ICAL ACTS	Everything Down	Upstream May Null Route You	VOLP & VPN DOWN	BGP and GRE Bouncing	Firewalls Overloaded	Firewall Memory Exhausted	NAT Exhaustion (65k limit)	Layer 4 Connection Pool Saturation	CDN, WAF, & Load Balancer Overloaded	Load Balancer Overloaded	WAF CPU Overloaded	Firewall Memory Exhausted	Web or App Server CPU Exhausted	Web or App Thread Pool Exhausted	Web or App Memory Exhausted	Database Overload	Authentication System Overloaded	
TYPIC				NSTRUME RESPONS					ENUE ACTS		SECO	NDARY A	PPLI CA	FI ON I MF	PACTS			
	SI EM OVERLOAD	LOST	LOST DEVICE CONSOLE	LOST COMM. CHANNELS	LOST HELP DESK	LOST REMOTE VPN	CAN'T ACCESS CONTACT LISTS (Respondent)	LOST REVENUE + LABOR	BRAND	SAN / Disk 1/0 Overloads	Application	Auto-Scaling Out of Control (\$\$)	Application Garbage Collection	Message Queue Overloaded	Application Exploited	Sensitive Data Disclosure		


INCIDENT RESPONSE (People and Playbook)



KEY SI TUATI ONAL AWARENESS CAPABILI TI ES

1																		
	N		warenes		Issite		warenes	Could	Attack Awareness									
	Bandwidth & Flows	Is traffic level unusual?	What services are impacted?	Are there upstream issues?	performing	Issite performing well locally?	Losd Balancer Health Checks	abusing the application or service?	Are the databases/ sources performing?	problems be related to service windows?	Attack Alerts	Know type of attack?	Know what was attacked?	common or	Is it ongoing or stopped?	What are the sources of the attack?	appropriate	

77

RSA Conference 2019

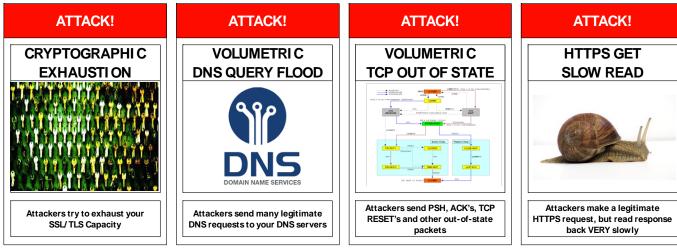
Tea/Coffee Break – 15 Minutes

COFFEE TIME

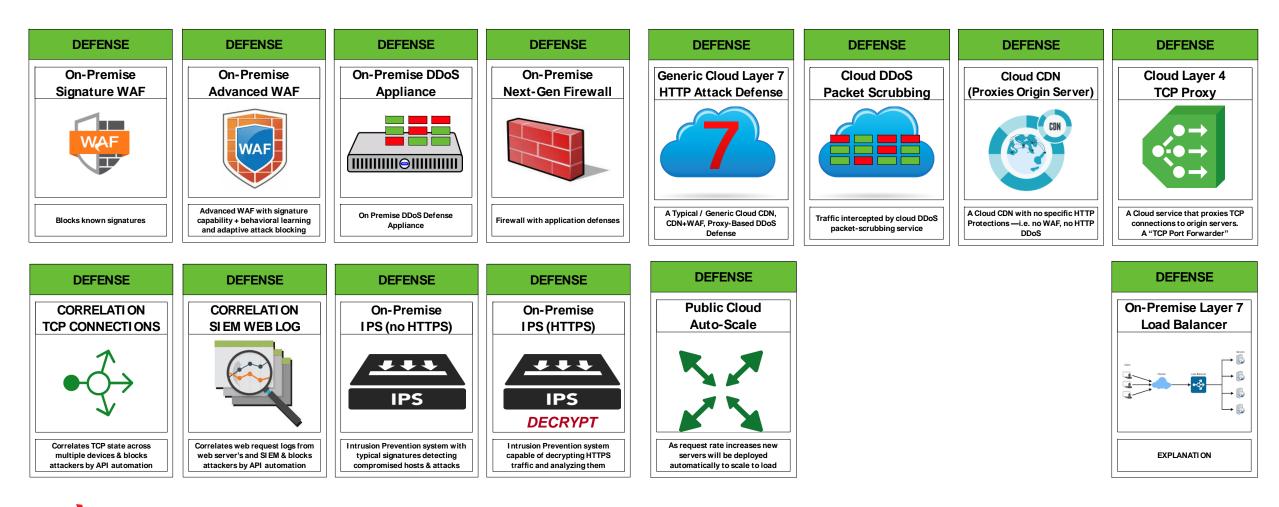
RSA[°]Conference2019

LAB3-W310 How to Design and Operate a DDOS Testing Program

GAME TIME! 45 Minutes


Introducing: Atak Warz!

The Rulezzz – Attack Cards


#RSAC

The Rulezzz – Modifiers

INTENSITY	INTENSITY	INTENSITY	INTENSITY
STEALTHY	LI KE A REAL USER	A BIT AGGRESSIVE	HI GH RATE FROM SOURCE
			IN OUT
Each attacker will send a very small amount of attack traffic — much lower than a regular user	Each attacker generates the same amount of traffic and requests as a legitimate user	Each attacker generates traffic that is a little bit more aggressive more than real users generate	Each Attacker Will Attempt High Bitrates Rates and High Packet Rates - Obvious Attackers
DI STRI BUTI ON	DI STRI BUTI ON	DI STRI BUTI ON	DI STRI BUTI ON
THE DARK WEB	THE LONE WOLF	A MODEST MOB	DEEPLY DI STRI BUTED
			ZOMBI E ARMY!
Attackers come from "The Dark Web" and emerge from TOR EXIT NODES	A single I P Address Attacks! Bandwidth: 1-10 Megabit/sec	100 to 200 Globally Distributed Attackers! Each sends between 0.5 and 10 megabit/ sec	A Large Global Botnet! 5000 to 100,000 Attackers!

The Rulezzz – Defense Cards

The Rules – Game Style 1

ATTACKER:

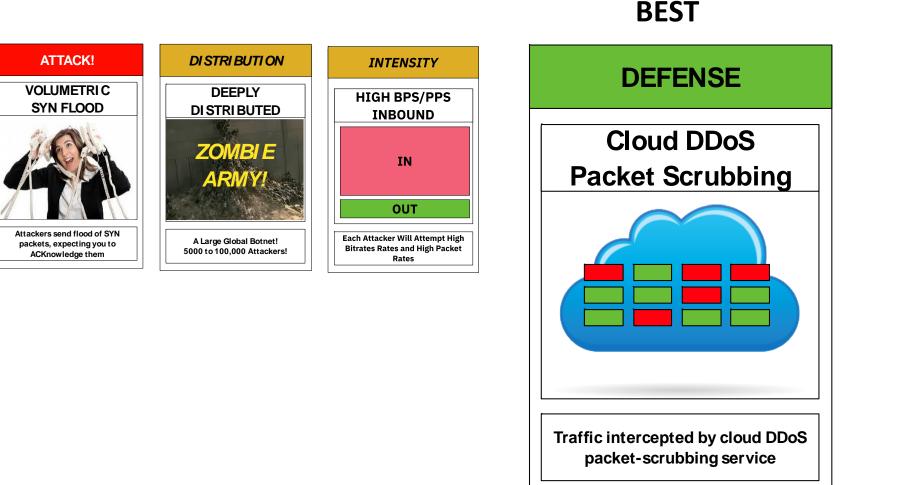
Choose 1 attack card Choose 1 intensity card choose 1 distribution card

PLAY THIS

DEFENDER:

Find the best defense -> PLAY THIS Find the 'worst defense -> DISCUSS THIS

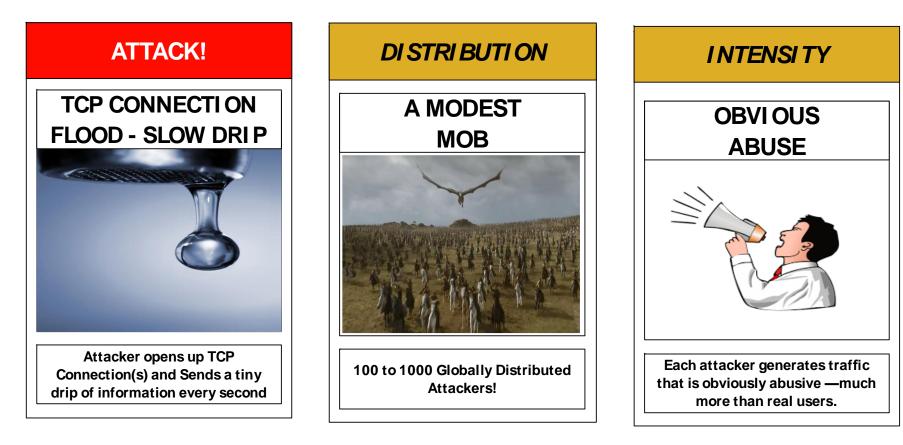
REPEAT for another attack



Example 1 - Attacker deploys 3 cards: Attack, Distribution, Intensity

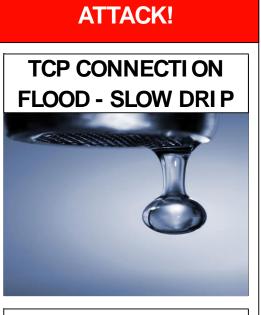
Example 1 - Defender deploys BEST and shows WORST countermeasure

Sense of RED WOLF

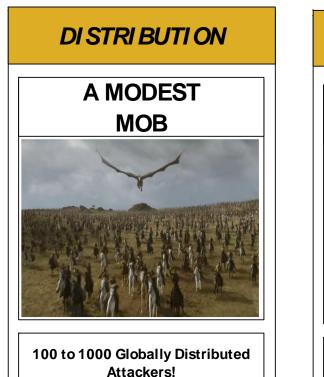

WORST

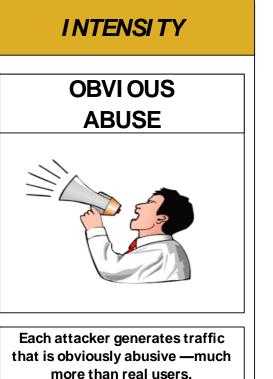
RSA Conference 2019

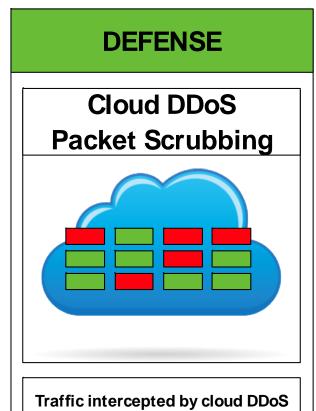
Example 2



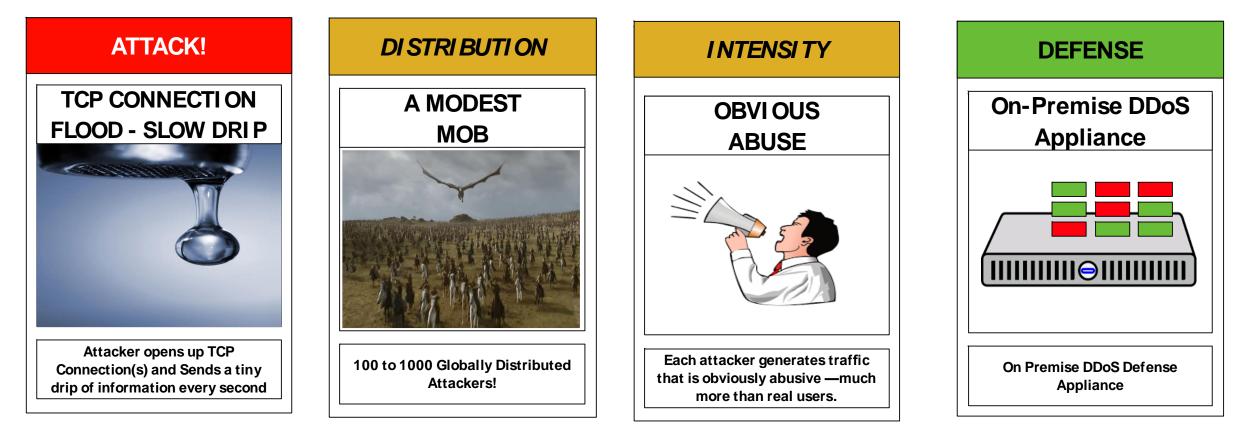
Security RED WOLF


Example 2


Is this the best?


#RSAC

Attacker opens up TCP Connection(s) and Sends a tiny drip of information every second



packet-scrubbing service

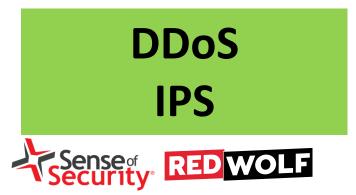
Example 2

Or is this?

There are EASY and HARD cases here

Consider three different *styles* of TCP Flood DDoS Attacks:

EASY


<u>Attackers:</u> 1 IP Address <u># of TCP Connections:</u> 1000 Rate: All At Once

MEDIUM

HARD

<u>Attackers:</u> A Few (100) Attackers <u># of TCP Connections:</u> 1 Million (10k TCP connections per attacker) <u>Rate</u>: Over 5 Minutes Attackers: 1000's (big botnet) <u># of TCP Connections:</u> As many as possible <u>Rate:</u> Open 1 TCP Connection Every Second

Here are the best defenses for each – note there is no silver bullet:

Load Balancers & DDoS (rare)

RSA Conference 2019

Summing it up - Is there a silver bullet? A single vendor that solves all problems? Is there ever one?

What we've covered so far:

- 1. DDoS IS Volumetric (that you knew)
- 2. DDoS IS more than Volumetric (Web Login Attack, TCP Attack)

(Bandwidth doesn't matter)

- 3. Even within one kind of attack there are many variations just like baseball pitches. i.e. the 'Style / Sophistication'
- 4. You'll need multiple defense technologies & controls

RSA[°]Conference2019

RSA[°]Conference2019

LAB3-W310 How to Design and Operate a DDOS Testing Program

Misconceptions and Why Test?

"My organization has multiple layered defenses including: CDN's, Public Cloud, Lambda Functions, Cloud WAF, Cloud DDoS, On-Premise DDoS, Advanced Firewalls, The Latest WAF's and more – I have so much security and my teams are great I am confident I don't need to test it." - CISO with a really big budget

(sounds complicated – are complicated systems easier to configure and maintain?)

RSA Conference 2019

" I'm Safe BECAUSE

my ISP does DDoS"

" I'm Safe BECAUSE

my ISP does DDoS"	But is it tuned?
-------------------	------------------

" I'm Safe BECAUSE

I just bought an F5 and turned on it's DDoS defenses"

" I'm Safe BECAUSE

I just bought an F5 and turned on it's	But who is the defence	
DDoS defenses"	protection automated?	

" I'm Safe BECAUSE

I have an on-premise DDoS appliance - I see it blocking attacks all the time"

" I'm Safe BECAUSE

I have an on-premise DDoS appliance	But what about the
- I see it blocking attacks all the time"	attacks it ISN'T blocking?

" I'm Safe BECAUSE

I use a leading cloud defense provider"

" I'm Safe BECAUSE

I use a leading cloud defense	But what about app	
provider"	layer attacks?	

" I'm Safe BECAUSE

I have a Hybrid Solution – Both Cloud scrubbing and On Prem Technology

" I'm Safe BECAUSE

I have a Hybrid Solution – Both Cloud Got Lots of \$'s. Tested it scrubbing and On Prem Technology yet?

" I'm Safe BECAUSE

I use cloud-based auto-scale servers so I will scale to the load"

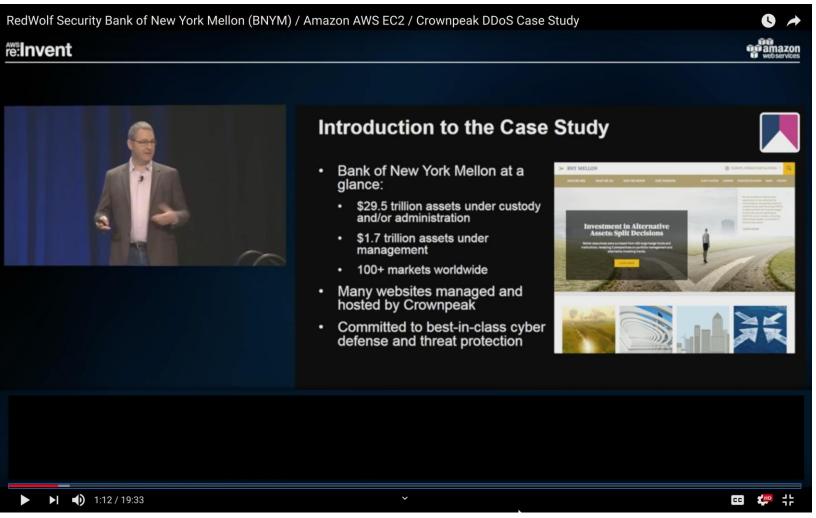
" I'm Safe BECAUSE

I use cloud-based auto-scale servers so I will scale to the load"

But what about the backend load?

" I'm Safe BECAUSE

my ISP does DDoS"	But is it tuned?	
I just bought an F5 and turned on it's DDoS defenses"	But who is the defence protection automated?	PTH
I have an on-premise DDoS appliance - I see it blocking attacks all the time"	But what about the attacks it ISN'T blocking?	NEED IN DEI
I use a leading cloud defense provider"	But what about app layer attacks?	」 2 2 2
I have a Hybrid Solution – Both Cloud scrubbing and On Prem Technology	Got Lots of \$'s. Tested it yet?	YO
I use cloud-based auto-scale servers so I will scale to the load"	But what about the backend load?	

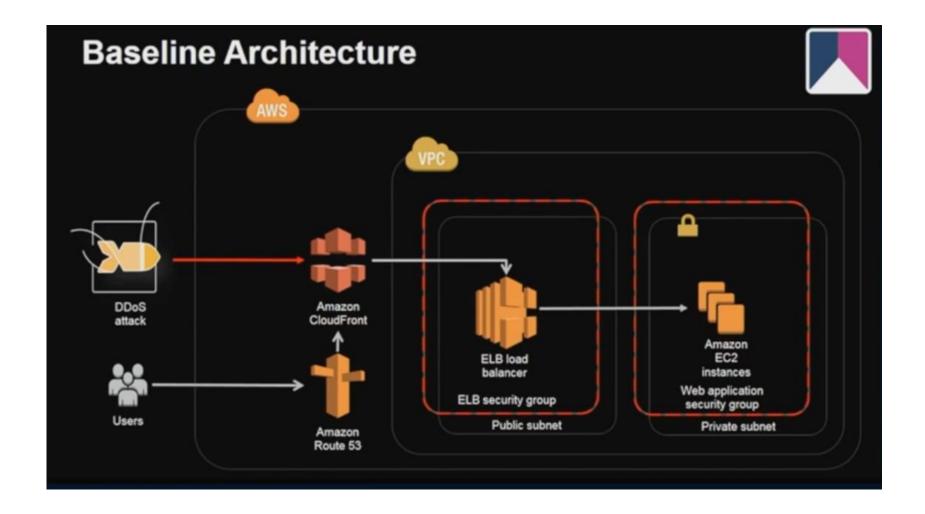


RSA[®]Conference2019

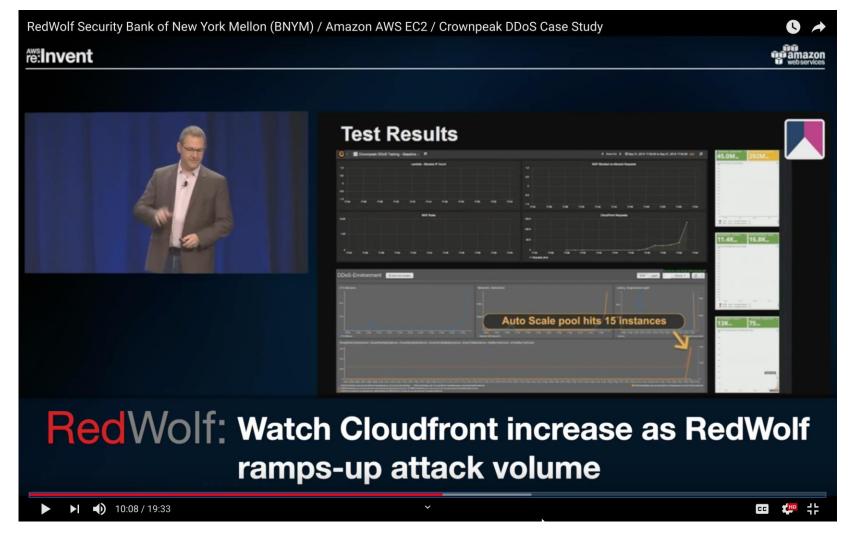
LAB3-W310 How to Design and Operate a DDOS Testing Program

How to Develop Your DDoS Testing Program

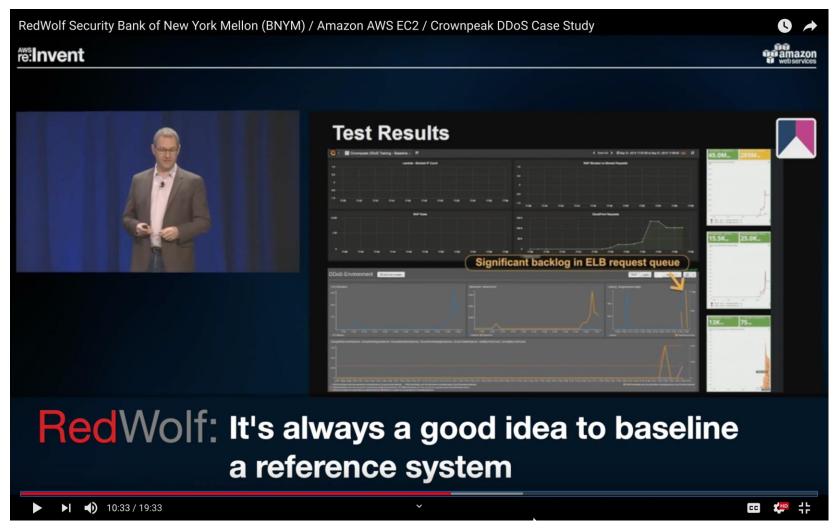
#RSAC An example of a DDoS testing program and improvements it can bring a cloud environment

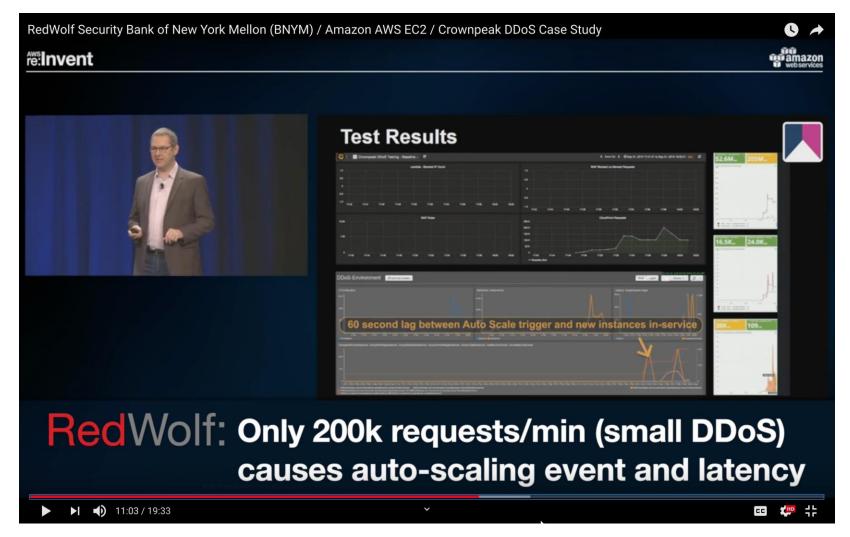


https://www.redwolfsecurity.com/resources/case-study-bank-new-york-mellon-crown-peak-amazon-aws/

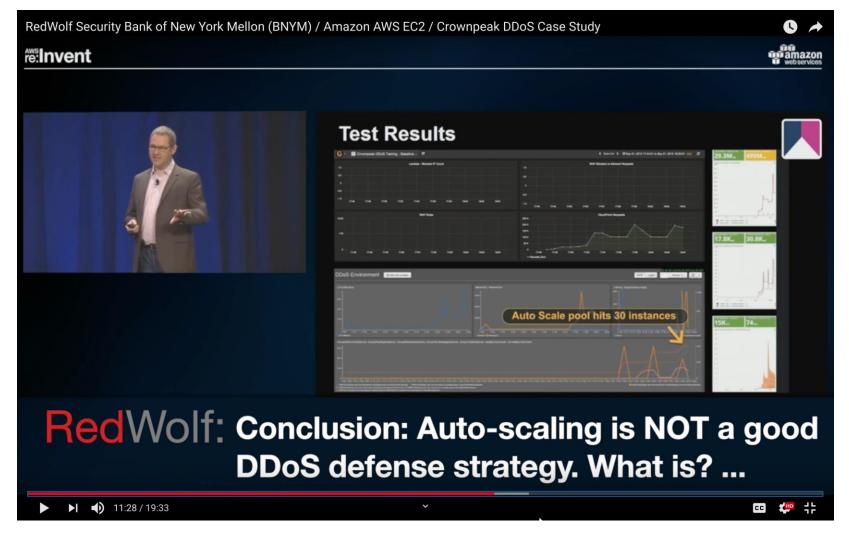

Baseline architecture – Cloud Front + ELB + Auto-Scale Group

RSAConference2019

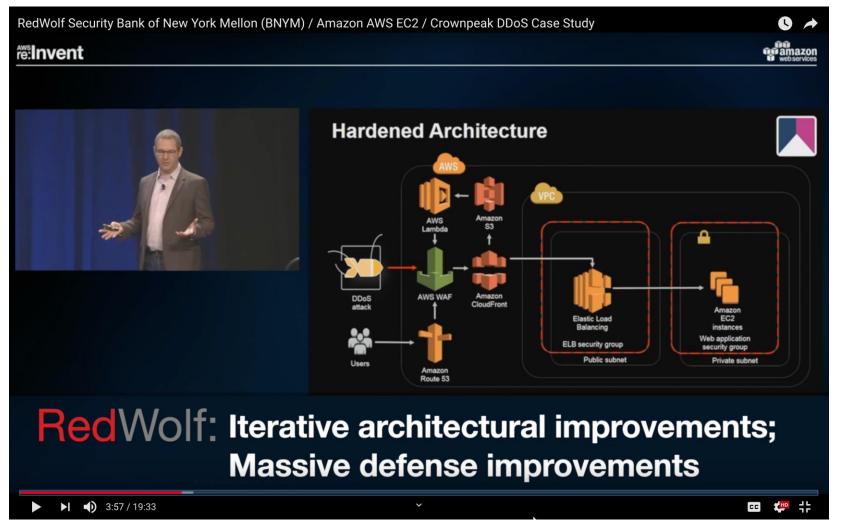

Auto-scale to 15 instances instantly


Elastic Load Balancer (ELB) backlog in request queue Requests not being handled

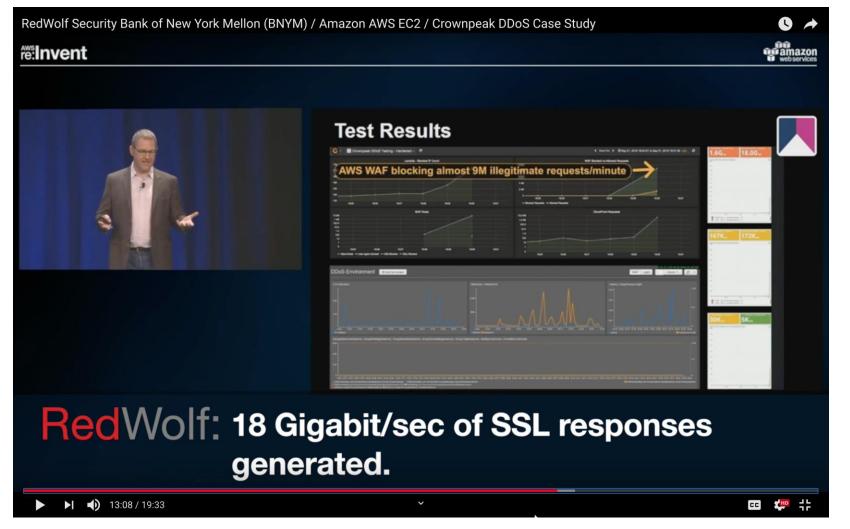
RSA Conference 2019


60 Second Lag between auto-scale trigger and new instances #RSAC 60 second downtime too

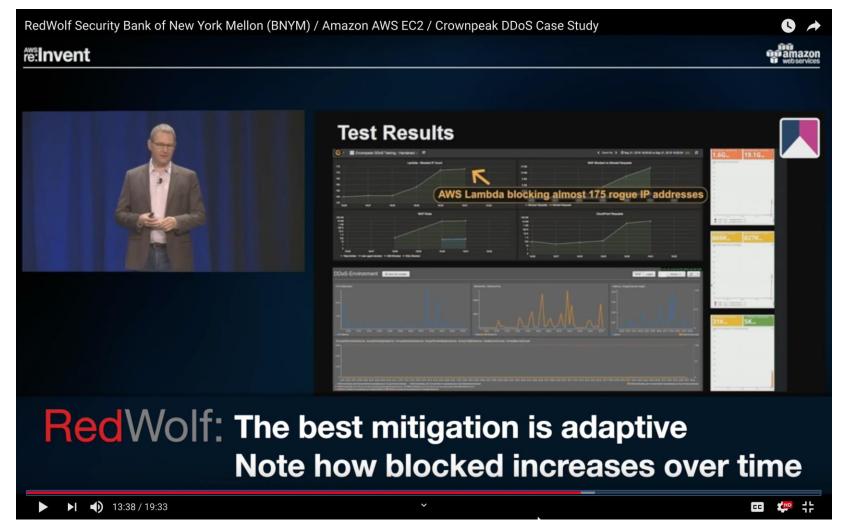
RSA Conference 2019


Auto-Scaling is not a DDoS defense – 30 instances Capacity should not be used to service attack requests

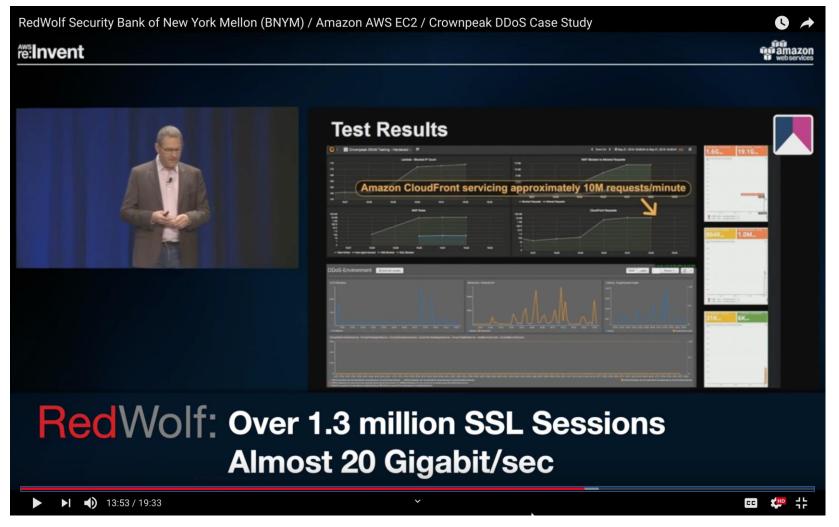
RSA Conference 2019


Hardened Architecture

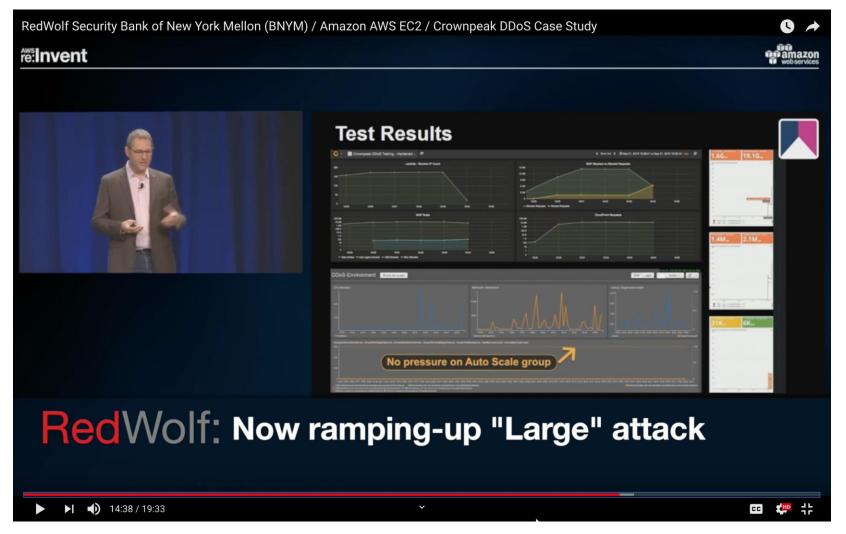
RSA^cConference2019


Blocking 9 million requests/minute

RS^AConference2019


175 (of 200) attackers blocked

RSA Conference 2019


Over 1.3 million SSL sessions Almost 20 Gigabit/sec SSL

RSA^cConference2019


20 Gigabit/sec SSL attack – no pressure on Auto Scale Group

RSA Conference2019

Example of DDoS DDoS & Cloud (AWS) Testing Program Tuning achieved 100x improvement over baseline

RSA Conference 2019

Key Elements of a DDoS Testing Program

DISCOVERY

Available Defense Systems What defense systems do you have? **On-premise, In Cloud**

Defense Capabilities What are the defense configurations? What is enabled? What is not?

Services to Protect What do you need to protect? What are mission critical services?

Application Attack Surface What features, like forms, are likely to be attacked?

TESTING	Baseline Service Performance Find out how scalable the actual service Do load testing and baselining		Test 3rd Party Vendors CDN, Cloud DDoS, Cloud WAF, Managed Monitoring & Detection	Service Monitoring HTTP(s), DNS, TCP, Routes BGP, SMTP, IPSEC and more
---------	---	--	---	--

Operational Response Skills Defenses **Automation** Processes **IMPROVE Tighten Configurations** Cyber-Drills, Online Run-Books, **Incident Response Procedures, Fill in Control-Gaps Triggers & Correlation Rules Cross-Silo Communications**

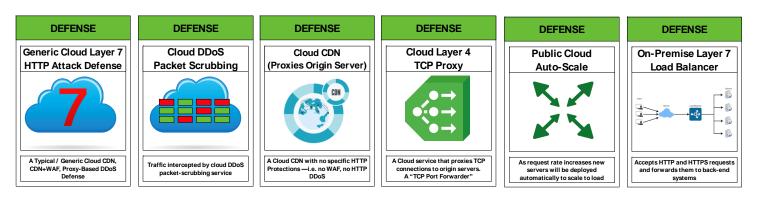
Scheduled Continuous Automated Testing **Detect Regressions Automatically**

RSAConference2019

Key Elements of a DDoS Testing Program

DISCOVERY

Available Defense Systems What defense systems do you have? On-premise, In Cloud Defense Capabilities What are the defense configurations? What is enabled? What is not? Services to Protect What do you need to protect? What are mission critical services? Application Attack Surface What features, like forms, are likely to be attacked?

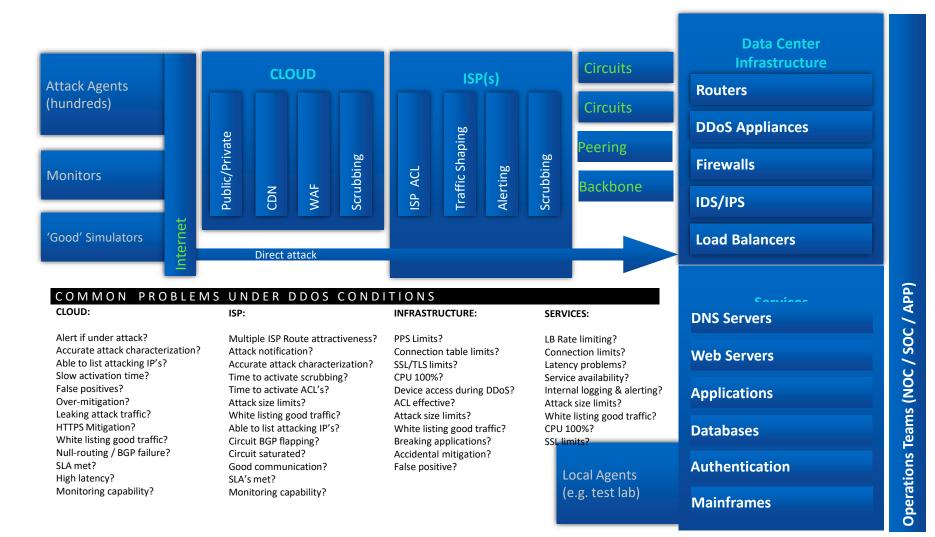


RSAConference2019

Identify Defense Elements

Available Defense Systems What defense systems do you have? On-premise, In Cloud

- What defense technologies do you have
 - In Cloud
 - On Premise
 - Built into the applications themselves
- Inventory should contain:
 - Is it on-premise or off-premise
 - The kind of defense it is (DDoS Scrubbing, WAF, ...)
 - Vendor and key contact
 - Operational Subject-matter-expert
 - Where do logs, alerts, and metrics go



RSAConference2019

Identify Defense Elements

Available Defense Systems What defense systems do you have? On-premise, In Cloud

RSAConference2019

How are they configured?

Defense Capabilities What are the defense configurations? What is enabled? What is not?

- The actual protection depends on the configuration
- For each defense system, document the features/capabilities
- Find out what is enabled and disabled
- Organizations often use only <u>10% to 20%</u> of what a defense device is capable of!

Traffic Level Controls

[] Block if Source IP sends high packet rate above threshold [] Block if Source IP sends high bitrate above threshold

Packet Challenge

[] Challenge SYN packets if SYN rate to destination above threshold[] Challenge UDP DNS requests if UDP rate to destination above threshold[] Reset TCP idle TCP sessions

Protocol Validation Controls

[] Block request if source fails TLS protocol handshake

- [] Block request fails protocol checks
- [] Block request if buffer overflow attempt detected

Reputation and Geographic Blocking

[] Block if Source IP geolocation matches blocked locations [] Block if Source IP has bad IP reputation (e.g. TOR, known botnet) **#RSAC**

RS^AConference2019

Signature Blocking

[] Block Injection Request Patterns[] Block Cross-Site Scripting Patterns[] Block Bad User-Agents

Behavior Blocking

[] Block high client request rates[] Block repetitive requests for same resource

[] Block very slow but repetitive authentication attempts

...

Services to protect and test

Services to Protect What do you need to protect? What are mission critical services? Identify the top mission critical services – these are what you need to protect – these are what you must test. **#RSAC**

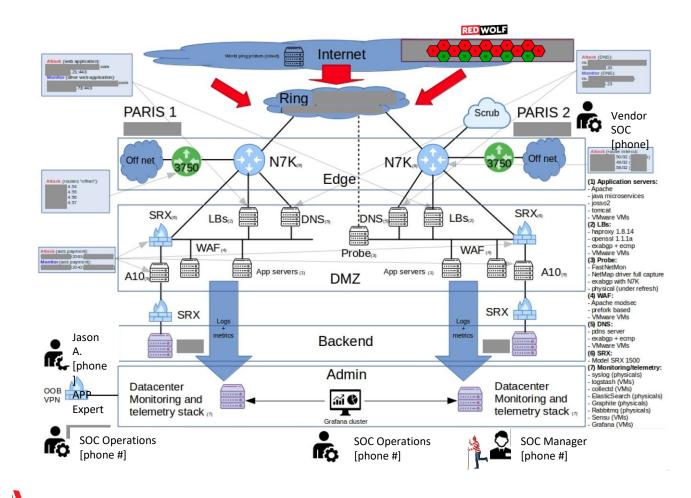
RS^AConference2019

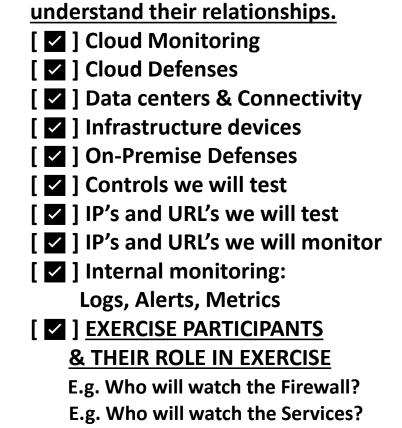
- Inventory should show:
 - Name of service
 - Where / how it is hosted
 - Why it should be tested / importance
 - How to reach it URL's & IP's, Ports
 - What authorization is needed to test it
 - Any testing limits

① DESCRIBE TARGET THIS IS		②DESCRIBE TARGET NETWORK DETAILS THIS TELLS WHERE THE TRAFFIC WILL BE SENT TO	③ AUTHORIZATION	(4) SET LIMITS							
											LIMIT MAX BANDWIDTH (with cloud
	SERVICE OR TARGET <u>NAME</u>	WHAT ANSWERS FOR THE TARGET	WHY TARGET WAS SELECTED	IS PRODUCTION?	ENTER TARGET (IP / Domain Name / Full URL / Network Prefix)	IP ADDRESSES IPv4 and IPv6	RESOLVE by DOMAIN or LISTED IP's?		AUTHORIZATIONS ARE	cloud defenses)	defenses ENGAGED) (in megabit/sec)

Application Attack Surface

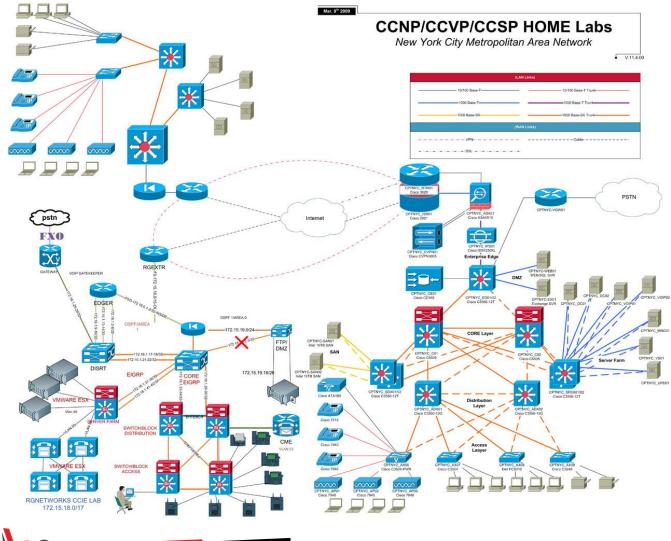
Application Attack Surface What features, like forms, are likely to be attacked?


- If someone were to attack this application, how would they do it? What features would they attack?
- Browse your web-sites and look for interesting 'features':
 - Authentication/login pages
 - Dynamic web pages that call databases
 - Search features and other forms
 - API Call URL's (e.g. personalization API's)



RSA Conference2019

Put it all together on a single diagram Note – this is not a network diagram



We need to identify the following and

RSA Conference 2019

Start with a network diagram

... Realize it won't show key information you need

Network Diagrams often lack key information required: [🗙] Cloud Monitoring [X] Cloud Defenses Data centers & Connectivity Infrastructure devices On-Premise Defenses [X] Controls we will test [X] IP's and URL's we will test [X] IP's and URL's we will monitor [X] Internal monitoring:

#RSAC

Logs, Alerts, Metrics

[X] <u>EXERCISE PARTICIPANTS</u> <u>& THEIR ROLE IN EXERCISE</u>

> E.g. Who will watch the Firewall? E.g. Who will watch the Services 2019

DDoS Testing Program – Key Testing Areas

TESTING

Baseline Service

Performance Find out how scalable the actual service Do load testing and baselining Test Local Defenses Router, DDoS Appliances, Firewalls, Load Balancer, WAF, IPS, etc... Test 3rd Party Vendors CDN, Cloud DDoS, Cloud WAF, Managed Monitoring & Detection Service Monitoring HTTP(s), DNS, TCP, Routes BGP, SMTP, IPSEC and more

The importance of baselining

Baseline Service Performance Find out how scalable the actual service Do load testing and baselining

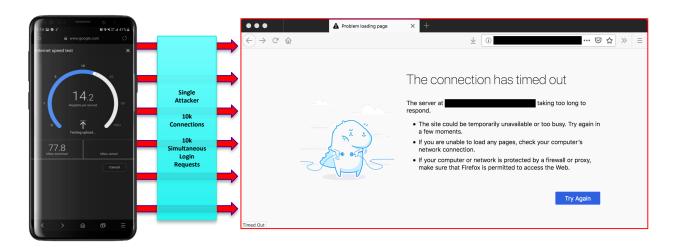
- Load test your services and find the 50% and 70% CPU utilization points
 - <u>TEST WITH LEGITIMATE REQUESTS</u> (this is not an attack test)
 - START LOW

Start with low request rates per connection – i.e. 1 request/sec from a small number of clients – 100 to 500.

- <u>RAMP UP SLOWLY RECORD IMPACT</u> Measure Client and Server
- CLIENTS

Measure request latency, user-experience

- SERVER
- Measure CPU Cores, Overall CPU, TCP Connections, Request Rate, Memory Utilization, Application Performance Stats

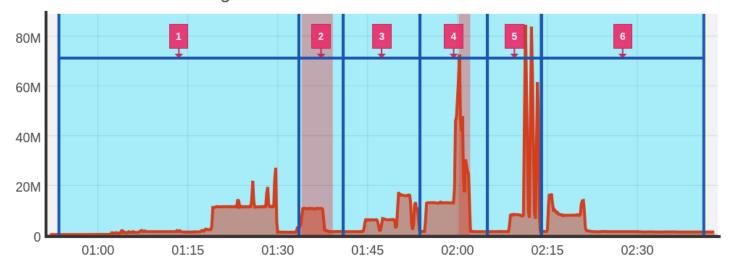


RSA Conference 2019

The importance of baselining

Baseline Service Performance Find out how scalable the actual service Do load testing and baselining Remember the example of a single mobile phone to a login page? Baselining was done to precisely identify service capacity and tune defenses.

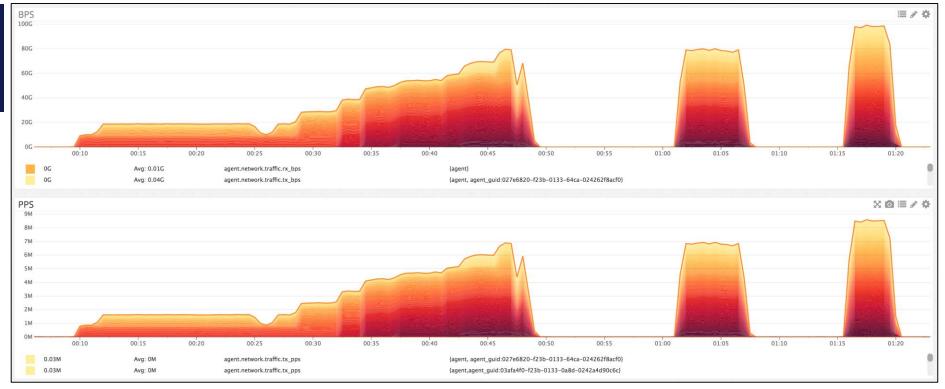
If you have a service that is not very scalable – you should know this and defend it accordingly!


Test your local DDoS, Firewall, Load Balancers, WAF, and even your servers – they have to handle leakage and initial surge of requests

Test Local Defenses Router, DDoS Appliances, Firewalls, Load Balancer, WAF, IPS, etc...

ID	Attack Vector & Performance
1	Connection Flood No impact to levels tested
2	Slow Read WAF did not block attack and server was impacted
3	Slow Loris No impact to levels tested
4	Slow Write WAF did not block attack and likely that WAF itself began to be overloaded.
5	SSL Flood No impact to levels tested but may have reached a throughput limit.
6	WAF Overload Attempt to overload the CPU of the WAF.

Cloud Agents - Traffic - Bits Per Second (BPS) - OUT (TX) Agent Network Traffic TX BPS SUM



Comprehensively testing kind of attack scenario can take between 5 minutes and 45 minutes.

RSAConference2019

Test your 3rd party vendors separately

Test 3rd Party Vendors CDN, Cloud DDoS, Cloud WAF, Managed Monitoring & Detection

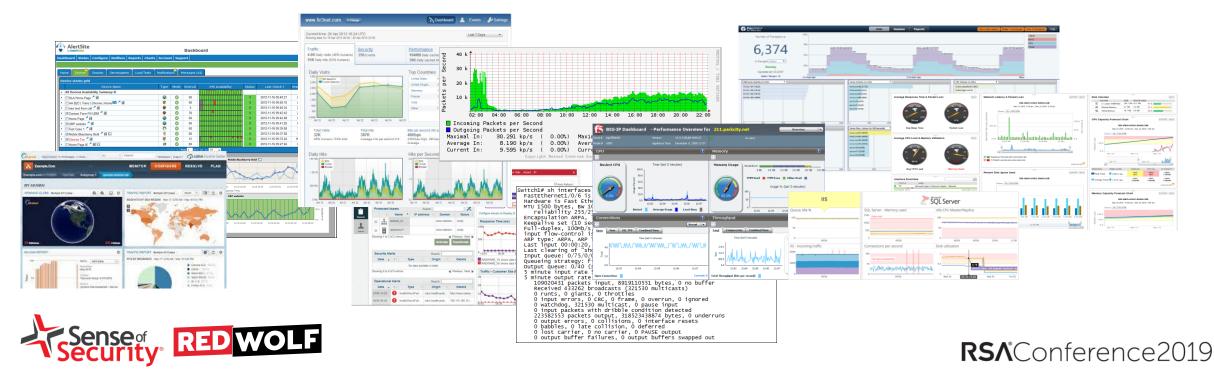
- Work WITH your vendors. They are not the enemy.
- Share your test plan and expectations with them confirm they agree your expectations match the service they are offering.

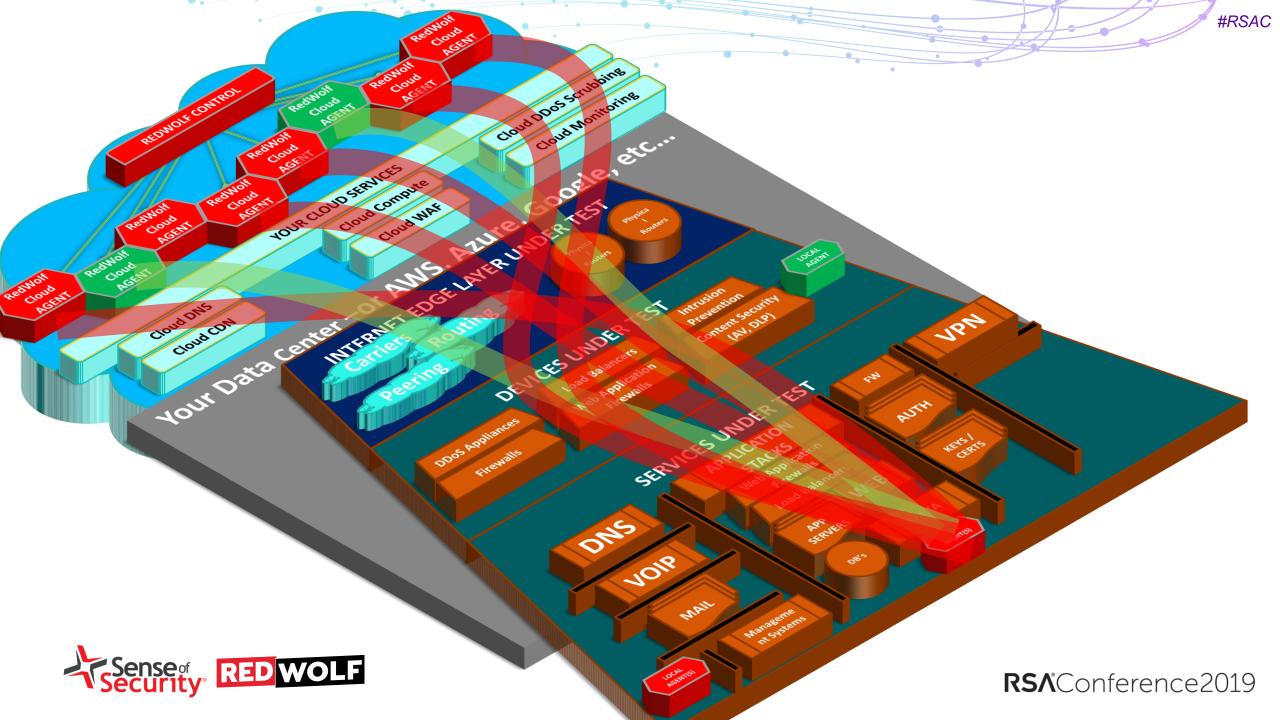
RSAConference2019

Tips for testing 3rd party vendors

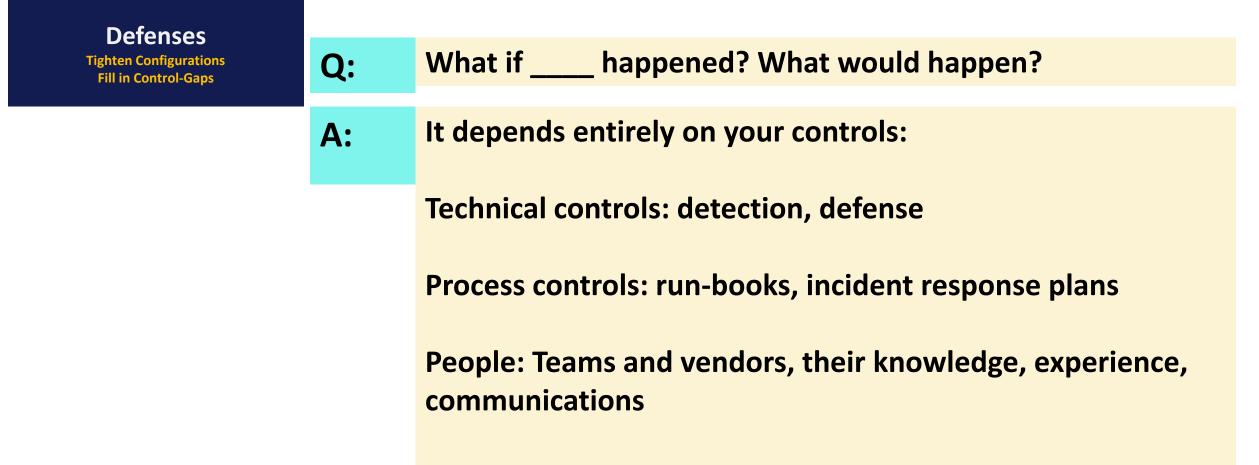
Test 3rd Party Vendors CDN, Cloud DDoS, Cloud WAF, Managed Monitoring & Detection

- Make sure to get <u>authorizations/approval</u> from the 3rd party vendors.
- Check the vendors acceptable use policy / testing policy.
- You legally can't launch most types of cyberattacks against most vendors without approvals!
- Vendors are not the enemy! They are part of your defense system
- Work WITH your vendors don't expect things to work perfectly the first time.
- The truth is, 70% to 80% of 3rd party vendor tests fail the first time!
- But most unsatisfactory outcomes are easily remedied.
- That's one of the great values of testing!




RSA Conference 2019

Test your network monitoring systems


Service Monitoring HTTP(s), DNS, TCP, Routes BGP, SMTP, IPSEC and more When you do a DDoS test, your operations teams should be monitoring the systems in path

- Network monitoring, device health, service health
- Connection counts, request rates, latency, availability, ...
- The teams ability to diagnose problems depends on their ability to see the situation clearly.

You're not <u>just</u> testing a device, vendor, or process. You're actually testing a <u>scenario</u> against some <u>defense controls.</u>

RSA Conference2019

Don't focus on the 'device' – focus on the configuration and controls of the device

Q:	If you turned OFF your Email SPAM filter – would you get more SPAM?
A:	Of course! No SPAM filter means no SPAM CONTROL, and SPAM gets through!
Q:	If you turned OFF your Anti Virus filter – would you get more viruses?
A:	Obviously no AV
Q :	If you turned of a specific WAF capability – say SQL Injection blocking, then?
A:	Obviously SQL injection attacks would make it through to the web servers.

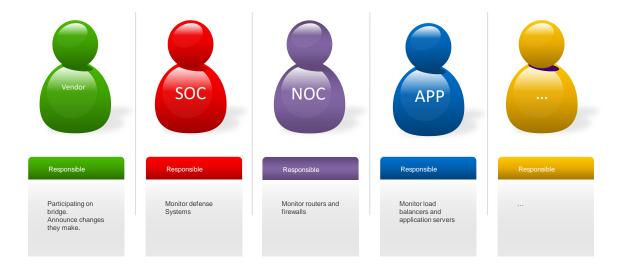
RSA^cConference2019

It's the defense and controls that matter

Q:	If your Cloud or ISP DDoS vendor hasn't enabled TCP FLOOD protection?
A:	Then they won't be able to stop TCP FLOOD's well.
Q :	If your DDoS system does not have any SSL/TLS protocol protections then
A :	I will be more vulnerable to SSL/TLS attacks.
Q :	Do you know what actual defense controls protect your services?
A:	If not – that's something to do! Don't stay at the 'device' level – dive in and
	map different kinds of attacks to the available countermeasures.

RSA^cConference2019

Remember your operational response team is what you rely on when something goes wrong – they need to know:


Operational Response Skills Cyber-Drills, Online Run-Books, Cross-Silo Communications

> END TO END TOPOLOGY Internet / Cloud **Network Diagram** (including cloud monitoring) **Data Center Connectivity** (ISP's / Carriers) Infrastructure (devices under test or in path) Services Tested (down to IP and URL's tested)

PEOPLE & ROLES & EXPERTISE

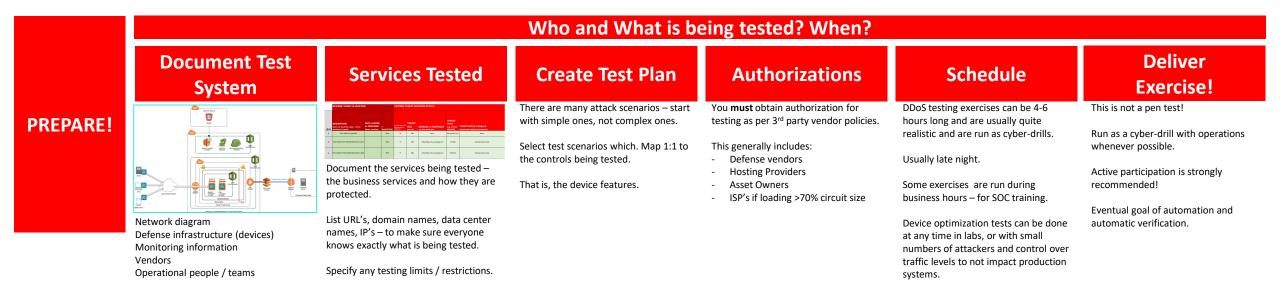
For each item on the left: <u>Who</u> monitors it?? <u>Who</u> is the expert?

RSAConference2019

DDoS Testing Program – What you are improving

IMPROVE

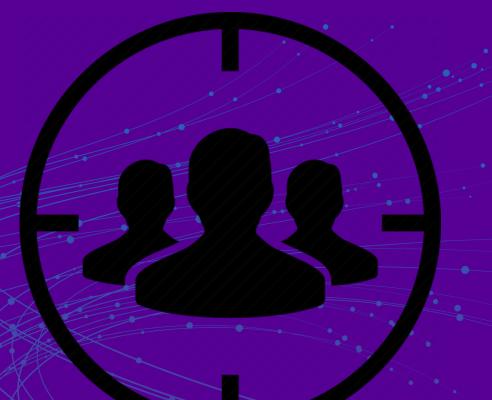
Defenses Tighten Configurations Fill in Control-Gaps Operational Response Skills Cyber-Drills, Online Run-Books, Cross-Silo Communications


Processes Incident Response Procedures, Triggers & Correlation Rules Automation cheduled Continuous Automated Testin Detect Regressions Automatically

- After every test go through the above areas and see how each can be improved.
- For each improvement you make document how it can be <u>measured</u>.
- You want to be able to show capability improvements over time

RSA Conference 2019

Before you run a DDoS test exercise – Remember!



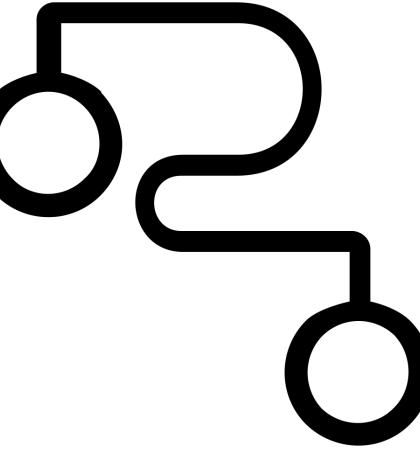
RSA[°]Conference2019

LAB3-W310 How to Design and Operate a DDOS Testing Program

WHAT YOU SHOULD DO NEXT: IMMEDIATELY 3 MONTHS 6 MONTHS

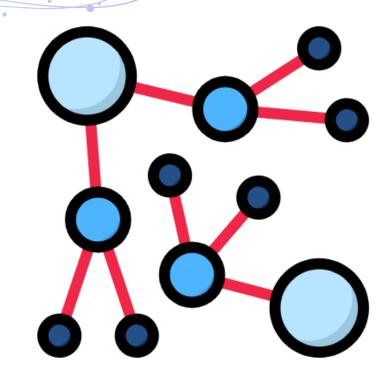
Practical Application

- Next week you should:
 - Characterize your environment
 - $\,\circ\,$ ID all the elements that affect your THREAT PROFILE
 - Devices & services that COULD be a target
 - All the infra in-front & behind the targeted systems (Routers, Firewalls, WAF's, Databases, etc)
 - Ops monitoring systems (log collection, alerting, metrics collection, both local & cloud).
 - 3rd Party Vendors & 3rd Party Techs (e.g. ISP DDoS Service, ISP DDoS Service,)


• In the first three months following this presentation you should:

- TECH, PEOPLE & SUPPLY CHAIN

- Identify capabilities for each element.
- 'technically capable' ≠ activated & configured!
- Identify alerts, evidence, & metrics that will be generated.
- Identify how/where they are accessed.


– TARGETS

Build a test plan, including targets & vectors

- In the first three months following this presentation you should:
 - **-TARGETS**
 - Start building a test plan, with relevant targets & vectors

Type of Scenario

Scenario Sophistication

Metrics / Telemetry

Environmental Model

Types of Targets Selected

Team Observations & Notes during Exercise **Technological Capability**

Operational Performance

Supplied evidence (Screenshots, logs, metrics)

RSA Conference 2019

- Within six months you should:
 - -Test & Retest:
 - Executed First Test, Identified Gaps, Resolved and Retest
 - Vuln Mgt Program
 Should formally incl DDoS Testing
 - Expand on Frequency & Coverage.
 Continuous Monitoring,
 Higher Frequency in-depth tests
 Focus on Apps!

#RSAC

Take a strategic, Programmatic view

Project	Month	>	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11
Discovery & Monitoring					Con	tinual	Edge I	Discov	ery & I	Monito	oring		
Application Baselining			2						2w-	-8w			
External Attack Simulation						3	w-9w					3w-9	W
Internal Monitoring Integration								(5w-12\	N			
Strategic Review								1w-4w					1w-4w
<u>Training</u> (as n	eeded)			1-2d	1-2d	1-2d		1-2d		1-2d	1	-2d	
Internal Attack Scenario										4			
Re-Testing & Automation					1w-4v		2w-	8w					
Modeling & Re	esponse	+		1w-4w			1w-4w	1w-4w		1w-4w			

Question Time

murrayg@senseofsecurity.com.au sharjil.khan@redwolfsecurity.com

RSA Conference 2019